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Summary: In this paper some inferential problems arising in the estimation of TAR-
ARCH and DTARCH models are investigated. In particular the subseries method is
proposed as a diagnostic tool for describing the sampling distribution of the
parameters estimators. The results of a Monte Carlo simulation experiment are
illustrated and discussed.
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1. Introduction

In the last two decades modelling non-linear time series has
received considerable attention and a number of non-linear models
have been proposed in literature. A comprehensive review of many of
these can be found in Tong (1990) and more recently in Tjgstheim
(1994).0One of the most widely used classes of non linear time series
models is the family of Threshold Autoregressive (TAR) model first
proposed by Tong (1978) and in a more complete version by Tong and
Lim (1980). The piecewise linear autoregressive conditional mean of
this structure allows to model asymmetry, jump phenomena and limit
cycles.

It is recognised that the behaviour of many real-life time series,
such as financial time series, shows a changing conditional variance.
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One popular approach in modelling heteroscedasticity is the ARCH
(Autoregressive Conditional Heteroscedastic) model proposed by
Engle (1982) and in a generalised version by Bollerslev (1986), where
the conditional variance is modelled as a linear function of past
squared errors.

Tong (1990) proposed to combine the use of TAR model with an
ARCH specification in order to simultaneously capture the non-linear
dependence in the mean and the changing conditional variance. This
proposal was recently elaborated by Li and Lam (1995) and further
extended by Liu, Li and Li (1997), who analyse the identification and
estimation strategy of TAR-ARCH and DTARCH models.

The flexibility of this non-linear structures allows to model very
complex phenomena but makes particularly hard to derive
probabilistic and statistical properties. Liu et al. (1997) determined,
under appropriate assumptions, the stationarity and ergodicity
conditions for a DTARCH model. The problem remains open for the
properties of the sampling distribution of the estimators, where the
classical asymptotic results can’t be easily extended.

In this context resampling techniques for dependent data can be
usefully applied. In particular, we propose a procedure based on the
subseries approach (Sherman, 1997) in order to describe the sampling
distributions of the parameters estimators of TAR-ARCH and
DTARCH non-linear models.

The paper is organised as follows. The next section briefly
describes the models considered. Section three illustrates the subseries
approach procedure for threshold autoregressive models. The results
of a Monte Carlo simulation experiment are shown in section four.
The last section concludes and gives some final comments.

2. The Threshold Autoregressive Conditional Heteroscedastic
Models

Tong (1990) suggested for the first time to use a threshold model

with changing conditional variance in order to combine the
advantages of the threshold principle and of the ARCH innovations.
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The so called TAR-ARCH model was further developed and
applied by Li and Lam (1995), it has a piecewise linear autoregressive
structure for the conditional mean and a conditional variance that is a
linear function of squared past disturbances.

Let {Y;} be a time series generated by a stationary process, a TAR-

ARCH(k, pi...px; qQ) model is given by:
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for j=1,2,....k, the threshold values, {r, r;, ry..r/, are such that
ro<ri<..<ry ro= -ec and r;= +ee with Rj = (r;,r;] and {¢&} is i.i.d.
with zero mean and conditional variance h,.

In this structure the conditional variance depends only on the
amplitudes of the shocks, the different effects of positive and negative
shocks is not considered. Some authors pointed out, particularly in the
financial framework, that the sign of the errors can have different
influence on the volatility.

To introduce the asymmetry both in the level and in the conditional
variance, Li and Li (1996) proposed to use a threshold principle also in
the ARCH residuals.

A time series {Y;} follows a DTARCH (k;ps,....px1;k2.q1,--.qs2)

(Double Threshold Autoregressive Conditional Heteroscedastic)
model if:
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where {g} is i.i.d. with zero mean and var(€|l.;)=h,, the threshold
values, r; and cy, are such that T <ry<r;<..<ry, ro= -e= and ry =+oo,
Cp<C<...<Cpy, €)= -oo and ¢y,= +oo, with j=1,2,...k;, v=1,2,....k,, d
and b are the delay parameters respectively for the conditional mean
and for the conditional variance.

To ensure a well-defined models the following regularity conditions
must be considered: |

the time series {Y;/ is stationary and ergodic;

- E(Y?) <o and E(g})<eo;
- all parameters in the conditional variance model are positive or

non-negative, a(()") >0 a‘.("’ >0 for =12, g,8v=12.. 5%

- (8,2_1,612_2,...,8,2_,]‘,) is linearly independent, for v=1,2,.. , k>

- characteristic roots of the autoregressive polynomial of the
conditional mean in each regime are such to satisfy the stationarity
conditions for an AR process;

N D)) () .7 Y — ey (V) .
- et a =(ay"’,q, I and a® = (o, ,...,afl‘))T,

then a() # a/) and @™ # a®) , for j#’ and v#’

Assuming that the regularity conditions hold, Liu et al. (1997)
derived the likelihood function for a DTARCH with only two regimes
for the conditional mean and the conditional variance. Wherever the
same results can be extended to a more complex structure, some
problems arise in the definition of the sampling properties of the
parameters estimators. They also give some asymptotic results for the
consistence of the MLE estimators, but only under the strong
assumption of known threshold values and delay parameters. If the
parameters are unknown, as it is often the case in real situations, the
problem becomes much more complicated. The non-differentiability
of the likelihood function prevents the usage of standard asymptotic
results.

In order to obtain an approximation of the sampling distribution of
the parameters estimators, resampling procedures can be used in this
context.

146



3. Subsampling in threshold models

In the recent literature much attention is devoted to the extension of
resampling methods to dependent data problems, such as time series
analysis.

In this framework some results were shown by Kunsch (1989) who
proposed to divide the observed time series into blocks in order to
capture the dependence in the original series and derived the
properties of the so called Moving Blocks Jackknife and Moving
Blocks Bootstrap (MBJ and MBB). The moving blocks procedure has
been studied in the mean time by Liu and Singh (1992) and Politis and
Romano (1994).

An alternative approach for dependent data was proposed by
Sherman and Carlstein (1996) and extended by Sherman (1997). They
use subseries of shorter length taken as replicates of the original data
structure. The Subseries Approach (SA) can be used to estimate the
distribution function of an arbitrarily complicated statistics when its
theoretical derivations is analytically intractable. The SA can be seen
as a simple diagnostic tool, based on a finite data set, without
requiring any theoretical analysis by the user.

We propose to use the SA to approximate the sampling distribution
of the MLE parameters estimators of TAR-ARCH and DTARCH
models where, as we have seen, the complexity of the structure and
problems related to the identification of some elements, such as the
threshold and the delay, make very difficult deal with standard
inference results.

Let Y,=(Y},...,Y,) be a time series of n observations generated by a
strictly stationary random process. Starting from Y, consider the
blocks of consecutive observations )’}‘:(Y;,}’i+,,...,Y,+1.1), for

i=0,...,(n-I) with I<n. Let s, =s,(Y,) be the statistic of interest to be

calculated on the entire series, we can use the behaviour of the
subseries replicate s/ =s,(Y)to estimate the future of the unknown

distribution of s,,.
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In particular we can obtain a graphical representation of the
sampling distribution by the empirical distribution function of the
subseries replicates given by:

YeIlsi < 9]

F(v)=
) n—I[+1

3)

The principal problem to be taken into account in applying the
subseries approach is, like in the moving blocks procedure, to chose
the length [ so that the subseries retain almost the same dependence
structure of the original time series Y,. Some general results in the
determination of the length was presented in Kunsch (1989). In the
subseries context Sherman et al. (1996) and Sherman (1997) showed
that [(n)=[cn"] for any fixed ¢>0 and y€(0,1/2). They suggest, based
on theoretical examples, that an optimal choice is I=(2n'?).

An alternative procedure to determine /(n), both in the MBB and in
SA context, was recently proposed by La Rocca and Vitale (1999). In
the determination of the length of blocks they take into account the
maximum degree of dependence in Y,,.

For an autoregressive linear structure they suggested that an
optimal choice for the length of the subseries is given by:

1(n)>n ¢’ 4)

where ¢ is the maximum characteristic root that dominates the
strength of dependence.

In the threshold model the non-linearity is captured by a piecewise
linear structure, since the process follows an autoregressive linear
model in each regime. The strength of dependence in each regime is
still dominate by the AR maximum characteristic root.

Therefore we can easily extend to the TAR family the results of the
linear context and calculate the subseries length as:

I(n)=35,41,(n)) (5)
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where [j(n)) is the length calculated in each regime given by:
L) 2n;¢f° (6)

with n; being number of observations in the j-th regime, 2§=,nj =n,

and ¢ the maximum characteristic root of the AR process in the j-th
regime. If we consider an ARCH structure in the error term the
strength of dependence being dominate by the maximum characteristic
root of the AR structure for both the conditional mean and the
conditional variance. Therefore in the (6) we have ¢=max(¢@r, ¢a),
with ¢r and ¢, the maximum characteristic roots for the AR structure
respectively for the conditional mean and variance.

4. Simulation Experiment

In order to obtain a graphical approximation of the sampling
distribution function of the parameters estimators of threshold
autoregressive models with conditional heteroscedasticity and
evaluate their bias, we perform the subseries approach on simulated
time series. The Monte Carlo simulation experiment is organised as
follows.

We generate non-linear time series starting from a DTARCH
model, whose flexible structure allows to contain all the simpler
forms. The simulated model is a DTARCH(1,1;1,1):

| E 1
vV =-0.6Y") +¢, Y, ; €0
(2) — (2)
Y =04Y +€, ¥,y 0
h" =0.002 +0.02¢2, Y, <0

h? =0.005+0.04¢2, Y, >0

We simulate 500 series with length n=200 and n=400 each,
dropping the first 50 observations in order to eliminate the influence
of initial seed, and compute the MLE estimates running the IWLS
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(Iterative Weighted Leas Squares, Mak and Li, 1994) algorithm
implemented in Fortran.

Parameters are chosen to ensure the regularity conditions and to
consider different degrees of dependence in each regime. Due to the
complexity of the estimation algorithm the orders p an g are set to one
in order to keep reasonaBle the number of parameters. The threshold
values are set to zero both for the level and for the residuals in order to
guarantee the twofold subdivision in subregimes in the simulation
processes.

For each Monte Carlo replicate we apply the subseries approach
considering respectively, for n=200,400, an l;00=l;+1>=52 and an
lia00y=l;+1>=104 with 296 and 148 subseries replicates for a total of
148.000 and 74.000 IWLS estimates. The results for 7=200 and n=400
have not substantial difference, hence, for brevity, we report only the
n=400 case.

Table 1 displays the principal descriptive statistics of the replicate
histogram of the sampling distributions for the AR and the ARCH
coefficients with n=400 and I/(n)=104, figure 1 shows the graphical
results of the kernel smoothed approximation.

Table 1: Descriptive Statistics of the replicate histograms (n=400)

0] 2) ) ) 2) 2)
a, a, *, x, «, x,

Mean -0.616  0.387 0.002 0.017 0.005 0.042
St.dev. 0.059 0.071 0.001 0.092 0.001 0.124
Skewness 0.420 -0.225 0.325 0.315 0.009 0.323
Kurtosis 3.127 2.845 3.323 0.3594 3.210 2.557

From the characteristic values and the graphical representations,
the replicate histogram does seem compatible with a normal sampling
distribution as confirmed by the Jarque-Bera normality tests (Tab.2).

Table 2: Jarque-Bera Normality Test

(1) 2) (n () (2) 2)
a, a, o, o oy o,

J-B 3.011 0.933 2.164 0.058 0.1864 2.556
p-value 0.221 0.626 0.338 0.971 0.910 2.557
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Figure 1: Smoothed replicate histograms for n=400 and l(n)=104
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In order to numerically evaluate the effectiveness of the procedure

in terms of bias reduction we compare the average value of the IWLS
estimates computed on each Monte Carlo replicate with the same
value calculated with the subseries approach.
As we can easily observe from the results of table 3, the SA value is
less biased than the simplé IWLS and the improvements are more
evident for the coefficients of the ARCH component where the
estimation problems are highly complex.

Table 3: Real value, IWLS and SA estimates

@ oy @ e o
0 -0.600  0.400 0.002 0.020 0.005 0.040
éIWLS -0.567 0.353 0.0016 0.013 0.0043  0.036
éSA -0.616  0.387 0.002 0.017 0.005 0.042

5. Concluding remarks

The (double) threshold autoregressive conditional heteroscedastic
model can be an useful tool for modelling time series with highly
complex behaviour such as the case of financial or hydrological time
series. However the lack of inference results for the parameters does
not consent to utilise this structure in solving fitting and prediction
problems.

The proposed subsampling procedure allows to obtain an
approximation of the parameters estimators sampling distributions and
to reduce the bias of the IWLS estimates where the classical
asymptotic theory can’t be easily applied. The suggested choice of the
subseries length ensure to preserve the original dependence structure.
The complexity of the estimation algorithm and the elevate number of
iteration for each series make the estimate procedure with the SA not
so fast in CPU time. Nevertheless it still remain an efficient method to
obtain diagnostic information about the shape of sampling
distributions and to approach inference problems in complex-non-
linear structure.
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