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Summary: Aim of this paper is to present a state space approach to forecasting
complex non-stationary economic time series with conditional heteroskedasticity
and a conditional mean decomposed into local polynomial trend, stationary
autoregressive, seasonal and irregular noise components. The order of the model is
chosen to minimize the value of the Akaike's Information Criterion while the
unknown parameters are estimated maximizing a Gaussian log-likelihood function
in the classical prediction error decomposition form. The proposed model is applied
to study a series of U.S. monthly inflation data from 1971.01 to 1999.10.
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1. Introduction

The mean of a wide class of non-stationary economic time series
{y,, t=1,..,T} can be typically decomposed into a trend ¢, a

stationary component w,, a seasonal component s,, a trading day

effect d, and an error or noise component e,

Vi =¢ +s5,+w +d, +e, (D
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with ¢, being a zero mean, serially uncorrelated white noise series.

Equation (1) has a general interpretation as a signal plus noise
decomposition

Y, =SE, +e,

where the signal SE, is given by the sum of a cyclical component CT7,
and a seasonal-periodic component S7,, including the trading day and
seasonal effects,

SE;=GCT+ST;

The cyclical component CT,, in turn, is given by the sum of a long
term structural component S7R, =c¢, and a short-medium term

component AR, =w,
CT, = STR, + AR,

A further generalization of this framework is to allow the noise
component ¢, to have a time varying conditional variance or
volatility,

(ele™ ) ~(0.h7) with ¢! ={e,..e.;}.

This work proposes an integrated approach to forecasting non-
stationary economic time series admitting a decomposition of type (1)
in which the error term is Conditionally Heteroskedastic (CH).

The structure of the paper is as follows. Section 2 illustrates a class
of state space models for structural time series of the type described in
(1). In section 3 a state space model for the estimation of the
conditional variance in CH time series is presented. Section 4 unifies
these two approaches in order to propose a new model which allows
for simultaneous modelling of the conditional mean components and
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of the time varying conditional variance. The proposed approach is
fully developed in a state space setting. The structural components of
the series and the time varying conditional variance are estimated by
Kalman filtering while the unknown hyperparameters in the model are
estimated maximizing a Gaussian log-likelihood function via the EM
algorithm. Throughout the paper, the results of some applications to
series of monthly and annual inflation data are shown. Some
concluding remarks are given in section 5.

2. A state space model for forecasting and seasonal adjustment

2.1. Modelling issues

Let {y,, t=1,.,T} be an univariate time series admitting a
structural decomposition of the type described in eq. (1). A general
state space representation for y, can be obtained through the model

v, =C,x, +e, (2a)
x, =Ax,_, +Dgq, (2b)

whereC,, A and D are (/xk), (kxk) and (kxm) matrices, respectively,
X, is a k-dimensional state vector and e, (/xI) and g, (mxl) are
Gaussian white noise series of mutually independently distributed
errors with known variances Var(e, )=0o_ and Var(q, )=0Q . Also,
the error series ¢, and g, are assumed to be uncorrelated with the
initial state x,, E(q,x,)=0 and E(xge, )=0, Yt, with
Xy~ N(m,, P, ). The transition matrix A and the observation matrix
C, have a block structure. The blocks in C, pick up the relevant

components of the state vector while each block in A determines the
dynamic behaviour of the corresponding component in (1).
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Kitagawa and Gersch (1984), henceforth KG, propose the
following model including local polynomial trend, stationary AR and
seasonal components, trading day effect and observation error

yl = I.Cl CZ CJ C4.l l‘r +er (33)
A, 0 0 0 D,
0 A, 0 0 D —
X, = X
“lo o a4, o[ 7|p, "
0 0 0 A, D,

Model (3) admits an orthogonal decomposition into four different
component models { C;, A;,D; }, with j=1,....4, each corresponding to

one of the structural components in (1). The trend model assumes that
¢, satisfies the stochastic difference equation

ch/ =4, (4)

The updating equation for the autoregressive component 18
P
W, = Z(piwl—i *t4q2, (5)
i=1

while the seasonal model is assumed to satisfy the condition

S=1

¥ == 2 Si-i Y43, (6)
i=1

obtained as a stochastic generalization of the usual constraint
Z,.S:’ols,_i =0, with S being the seasonal period. Similarly, the model

for the trading day effect is derived from the constraint le Yi =0
and defined as
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d,=3y,d )

where y,, is the trading day effect factor and d;, is equal to the

number of i-th days of the week minus the number of 7-th days of the
week in the rth period. The transition equation for the factors y,,

directly follows from the nonperturbed difference equation constraint
Vi =Pig3=1::0.

The Kalman filter algorithm (Kalman, 1960) can be used to obtain
a Minimum Mean Square Error (MMSE) estimate of the expected

value of the state predictive density p(x,.;|y') and of the

smoothing density p(x, |yT ). The estimation of the smoothing

density is essential for seasonal adjustment and, in general, in any
signal estimation problem.

2.2. An application to monthly inflation data

As an illustration, I show the results of an application of the KG
modelling procedure to the analysis of the U.S. monthly inflation rate
from January 1971 to October 1999, measured as the first difference
of the log-transformed U.S. Consumer Price Index (base 1982-
1984=100) for all urban consumers (CPI-U). This index differs from
the CPI for Urban Wage Earners and Clerical Workers (CPI-W) by
including the buying patterns of all urban households regardless of the
consumer units’ occupational status. The data have been plotted in
Pig: 1.

For the identification and the estimation of the model, I use only
observations up to December 1998 while the last ten observations are
left for out of sample forecast evaluation. The model considered
includes a trend, a seasonal (S=12) and an autoregressive component
with no trading day effect. Following Kitagawa and Gersch (1984),
the orders of the polynomial trend and of the autoregressive
component have been chosen to minimize the value of the Akaike
Information Criterion (AIC). On the basis of the results of the

125



exploratory analyses performed, including preliminary ARIMA
modelling of the series, the search has been restricted within the
ranges g={1,2}, for the trend, and 0Sp<7 for the autoregressive
component.

Figure 1. First difference of the log-transformed U.S. CPI-U from
1971.01 to 1999.10 (Source: U.S. Bureau of Labour Statistics).
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Table 1. AICs of Trend plus Seasonal plus AR models

AR order Trend order g=1 Trend order q=2
0 -9.1013 -8.8551
1 -9.1027 -8.8577
2 -9.1057 -8.8667
3 -9.1224 -8.8764
4 -9.1154 -8.8662
5 -9.0990 -8.8521
6 -9.0924 -8.8373
7 -9.0829 -8.8193

The AIC (Table 1) indicates a model with a polynomial trend of order
g=1 and an AR(3) component. The Maximum Likelihood (ML)
estimates of the model parameters and the corresponding asymptotic
standard errors have been reported in Table 2. For the numerical
maximization of the Gaussian likelihood function, I have used a
version of the EM algorithm tailored for state-space models by Wu ez
al. (1996). The initial value of the state has been assumed fixed, with

P, =0, and its components have been estimated by the EM algorithm

as extra parameters in the model. Figure 2 shows the predicted and
smoothed model components.
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Figure 2. First difference of the log-transformed U.S. CPI-U. From
left to right and from top to bottom: predicted and smoothed cycle-
trend, cycle-trend + AR, seasonal, autoregressive and irregular
components.
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The former have been estimated using only information up to time (z-
I) with a single Kalman filter run while the latter have been estimated
by Fixed Interval Smoothing (FIS) using the whole set of information
up to time (7). The predicted components are of interest for
forecasting while the smoothed estimates should be considered in a
time series decomposition problem (e.g. seasonal adjustment).

Table 2. Parameter estimates and asymptotic standard errors (in
parentheses) for the model with trend of order 1 and AR(3) component

9 9, 03 var(q; )
0.7783 0.1537 -0.5577 4.2548x 1077
(0.0500) (0.0483) (0.0394) (1.2918% 1077)

var(q, ,) var(q;, ) o’

¢
3.1909% 107 39197% 107 2.9003x 107°
(1.0713% 1077 ) (2.1579% 10™%) (3.1464% 1077)

The two high peaks in the trend component are representative of the
effects of the 1973 and 1979 oil shocks on the level of the inflation
rate while the dip at observation 183 can be related to the 1986 oil
price decrease.

Figure 3. Noise global and partial autocorrelation functions for the
model with trend of order 1, seasonal and AR(3) component.
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As shown in Fig. 3, the global and partial autocorrelation functions of
the predicted noise component are not significantly different from O at
any lag.

3. A state space approach to the estimation of conditional variance

3.1. The class of CPV models

This section introduces a class of state space models for the
estimation of the conditional variance in CH time series. Let u, be an
univariate series of prediction errors such that (u,|u"' )~ N( O,h,2 ) and
Cov(u,, u,;)=0, Vd # 0. Also assume that u, has finite moments up

to the fourth order. A Changing Parameters Volatility (CPV) model
(Storti, 1999) of order (r,s), with r and s integers, is defined as

I S * *
w=Yau,;+ b h;t+e =C x, +e, (8a)
i=1 =1
* * * *
X, =Ax,_, +q, (8b)

N " % . s 2
where e, is a Gaussian white noise observation error ¢, ~ N(0,0; ),
* v > N .
q, (nxl), with n=r+s, is a Gaussian serially uncorrelated system

error, q: ~ N(0,Q* ), and x: (nxI) is an n-dimensional state vector

with state variables given by the stochastically varying parameters
a;,(i=1,...,r)and b;, (j=I,...,s). The observation matrix is

*
C; =yt [ By ]

while A* is an (nxn) transition matrix of unknown coefficients. The
specification of the model is completed by the usual assumptions



E(g/e,)=0 ,V{1,z)
x, ~ N(my,P, ) with E[q,(x,) ] =0 and E( x,e,)=0 , ¥t

Under the above assumptions the model is conditionally Gaussian and
the Kalman filter can be used to obtain a MMSE estimate of the state
vector. The conditional variance is recursively estimated as

Bt =C Py (C] J +©7 )

where P =Var(x‘ i ). The conditional variance equation (9)
tle-1 (3 q

can be also written as

r+y
5

r r r
g .8 2 2
hi =0, +3 Pijcr =i t > Pjjc i j-r) T > Pijor Uil
i=1

Jj=r+l = =T

s § s g (10)
3 2 pi,j(l)hl-(i—r)hl—(j—r)+z > pi,j(l)ul—iht—{j—r)

i=r+l j=r+l i=1 j=r+l

with p, ;,, being the element of place (ij) in P,T,_,. Compared to

conventional approaches, the CPV model has two main advantages.
First, it allows for time varying parameters in the conditional variance
specification (10). Second, interaction terms between past innovations

and volatilities are easily included in the model. The choice AT =0
yields a more parsimonious random coefficient version of the CPV
model that we will call the constrained CPV model or, abbreviated,
CPV-C. In a CPV-C model the conditional variance parameters are
constant but the interaction terms are still present. It can be shown

(Storti, 1999) that, if A" =0 and the covariance matrix Q' is

diagonal, the resulting CPV-C model will have the same conditional
variance as a Generalized Autoregressive Conditionally
Heteroskedastic (GARCH) model (Bollerslev, 1986) of the same
order. Similarly, for s=0 the model is a random coefficient
autoregressive model of order r. A generalization of model (8) is
given by the regression CPV model
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Yo=MB+u, =M B+C x| +¢, (11a)
X, =A%, ¥q; (11b)

where y, is an observed time series, M, is a vector (/xg) of
endogenous or exogenous regressors and B a vector (gxI) of
unknown parameters. Again, as in section 2, the model parameters
A", Q', o’ and B can be estimated maximizing a Gaussian log-

€
likelihood function expressed in the classical prediction error
decomposition form. Finally, it is worth noting that, when forecasting

from a CPV model, the conditional variance h; affects the estimate of
the conditional mean E( u, |u'~" ) in two different ways. First, h}

enters the state updating equation, second, the estimated E( x: |u'_’ )
does not necessarily have to be equal to zero.

3.2. An application to the estimation of the conditional variance of the
U.S. annual inflation rate

In order to illustrate the actual modelling procedure, the CPV
regression model is here applied to estimate the time varying
conditional variance of the U.S. annual rate of inflation from 1820 to
1998 (Fig. 4) calculated as the annual percentage change in the
consumer price index (base 1982-84=100). This series has been
obtained as a combination of three indices. From 1820 through 1874,
the annual cost-of-living index calculated by the Federal Reserve
Bank is used. From 1875 until 1912, it uses a monthly Index of
General Prices calculated by the the Federal Reserve Bank of New
York which was weighted between wholesale commodity prices
(20%), wage payments (35%), the cost of living (35%) and rents
(10%). For more information on this index, the interested reader may
refer to Snyder (1924). From 1913 on, the Bureau of Labour's
Consumer Price Index is used (CPI-U).
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As a first step, I perform an ARCH-LM test (Engle, 1982) on the
residuals of a first order autoregression. The order of the
autoregression has been chosen on the basis of the analysis of the
global and partial autocorrelation functions of the series. The LM test
for ARCH is highly significant at any reasonable level up to lag 8,
suggesting  the  presence  of  autoregressive  conditional
heteroskedasticity in the data.

Figure 4. U.S. annual inflation rate from 1820 to 1998 (Source:
Global Financial Data).
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As in the previous section, the order of the CPV model to be fitted
can be chosen to minimize the value of the AIC or some other
criterion such as the Schwarz Criterion (SC). The latter penalizes
overparameterised models in a more severe way than the AIC. Table 3
reproduces the values of the AIC and SC for different model
specifications. The model structure considered includes an AR(1)
specification for the conditional mean with CPV(r,s) residuals. The
search has been restricted within the intervals /<r<3 and 0<s<].

Table 3. AIC and SC values for different CPV regression models

Model order (r,s) AIC SC
(1,0) 6.0336314 6.1240539
(2,0) 6.0483059 6.2291508
(3,0 6.0822615 6.4077823
(1,1) 5.9351725 6.1160742
2,1) 5.9136737 6.2391945




Also, several different CPV-C specifications have been considered
and the corresponding AIC and SC values have been reported in Table
4. For the unconstrained CPV model, the AIC indicates a model of

order (2,1) while a (1,1) model is selected on the basis of the SC.

Table 4. AIC and SC values for different CPV-C regression models

Model order (r,s) AIC SC
(1,0) 6.0300828 6.1024208
2,0) 6.0518270 6.1603339
(3,0) 6.0239173 6.1866777
(1,1) 5.9398935 6.0484004
(2,1) 5.9479811 6.1107415

Furthermore, the SC value for the CPV(1,0) model is only slightly
higher than that registered for the more complex (1,1) model. The
CPV(2,1) model is likely to be an overparameterised model for this
series as suggested by the high number of not statistically significant
parameters in its specification.

Table 5. ML parameter estimates and asymptotic s.e. (in parentheses)

AR(1)-CPV(1,0) o2 Q A ® 0,
15.7690  0.3727 0.3705 0.7439 0.4851
(2.2466)  (0.1619)  (0.1849)  (0.3788)  (0.0939)
AR(1)-CPV(1,1) o2 Q(1,1) Q(2,2) Q(1,2) A(l,1)
¢
1.4823 0.3948 0.2859 0.0927  -0.1956
(0.5192)  (0.1852)  (0.1185)  (0.0976)  (0.2375)
A(2,2) A(1,2) A(2,1) ?, 0,
0.2875 0.9963 0.1851 1.4775 0.5210
(0.1264)  (0.1857)  (0.0874) (0.5109) (0.1266)
2 = 2
AR(1)-CPV-C(1,1) O-e2 Q(L,1) Q(2,2) Q(1.2) 0o
1.8024 0.2540 0.6878  -0.0153 1.1628
(0.8649)  (0.1003)  (0.0923)  (0.0645)  (0.4605)
9,
0.5704
(0.0724)
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For the sake of brevity, the estimates relative to the CPV(2,1) model
have not been reported here.

Differently, for the constrained model, both criteria designate a
CPV-C model of order (1,1). Hence, I consider estimating two
different unconstrained CPV specifications of orders (1,0) and (1,1),
respectively, and a constrained CPV-C model of order (1,1) (Table 5).
The results have been compared with those obtained using the
conditionally Gaussian AR(1)-GARCH (1,1) model

v, =3.016+0.624 y, ;, +u,
(0.928) (0.066 )

W =0.749+0.250u? ; +0.749 h?,
(0.384) (0.074) (0.056 )

and the AR(1)-ARCH(1) model

Y, =1.572+0.523y,_, +u,
(0.735) (0.074)

hl =15.233+0.476 u’
(1.091) (0.130)

The performance of all the models considered in estimating the
conditional variance of the annual U.S. inflation rate has been
evaluated on the basis of four different loss functions, namely

L3 A 2 z A9 (5D
MSE, =T7'Y [u} —h] ]? LSE, =T Y [In(u? )-In(h? )]

)‘:] ’=l

T A T A
MAE, =T Y|u} —h? | LAE, =T 'Y |In(u} )—In( h}? )|.
t=1

=1

The results have been reported in Table 6. The last column gives the
value of the maximised log-likelihood and, in parentheses, the number
of estimated parameters for each model. The CPV models considered
always perform better than GARCH models in terms of MSE, and
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MAE, even if the GARCH(1,1) model performs better than all the
other models in terms of LAE, .

Table 6. Values of four different loss functions
Model MSE, MAE, LSE, LAE, Lik.
AR(1)-CPV(1,0) 3826.3  30.789 10.266 9.137  -522.96 (5)
AR(1)-CPV(1,1) 4057.1 31.023 8.249 2.403 -509.68 (10)
AR(1)-CPV-C(1,1) 3951.8 31.565 9.463 3.196  -514.10 (6)
AR(1)-ARCH(1) 4105.8 31.585 12.175 2.428 -527.36 (4)

AR(1)-GARCH(1,1) 43542  33.526 8.677 2211  -516.37 (5)

Figure 5 shows the estimated conditional standard deviations obtained
using a CPV-C (1,1) and a GARCH(1,1) model.

Fig. 5. Conditional s.d. from the CPV-C(1,1) (solid) and the
GARCH(1,1) (dashed) models.

15

4. A structural state space model with conditional heteroskedasticity

4.1 The S-CPV model

Some economic time series exihibit features which cannot be
separately captured by one of the two models we have considered in
the two previous sections. In these cases, in order to allow for
simultaneous modelling of the conditional mean components and the
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changing conditional variance, a feasible approach is to define a new
model obtained nesting a CPV(r,s) structure into the KG model
defined in section 2. The final model will be called a Structural CPV
(S-CPV) model of order (g, p, S, 1, r, 5) and defined as

»w=[C, C, C; C, C: ]xr te, (12a)
A4, 0 0 0 0] [D
0 A, 0 0 0 D,
x'=|0 0 A, 0 0| + D g (12b)
0 0 0 A, 0 D,
LO 0o 0 0 A _D*d
where
x| ={x, {x, )] and 9l =lq, (a:)7.

* *

x,,4q,,C, and A" are defined as in section 3. The system error has

multivariate Gaussian distribution q,r ~ N(O,QT) with

Lo 0
Q‘{o Q‘}

Example. A S-CPV model of order (2, 2,4, 1, 1, 1) i.e. with a trend of
order 2, an AR(2) component, a seasonal component of period §=4, a
trading day effect and a CPV(1,1) error will have system matrices
given by
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C/=(10|10100|d,d,| uw, h,],

where I, denotes an identity matrix of order 6; D, (2x5), D, (2x5)
and D; (3x5) are matrices of zeros with the first, the second and the
third element of the first row, respectively, equal to 1; D, (6x5) is a

matrix of zeros and D" (2x5) has all the elements equal to 0 except
for the fourth element of the first row and the fifth element of the
second row which are both equal to 1. The state vector and the system
error are given by

¥ %
Xy "[Cr Cr—ll wl Wr—ll S¢S '51—?| y!,r """ }/6,1| al,: bl,lll

" * e
q, =[q],l q,, q.?,:l q;, q2,r]

The log-likelihood function of a S-CPV model can be written as

Uy;A"07,0" )=-=log(2r)-=Slog( h! |- 1" (13
w0l 0" )=~ log(em)=2 Rlogll |- 23 )

[
where

o TriF
€h-1 = Vs —Cr X -1
and

(h ) =C,’P,{:_,(Cf) +0?
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with x,’],_, =E(x]|y") and P:|7;—1 =Var(x] | y"'). The unknown
parameters in {A”,07,0"} can be estimated by maximizing the

Gaussian log-likelihood (13) via the EM algorithm. Alternatively
scoring or quasi-Newton methods could also be used (see Watson and
Engle, 1983, for a discussion on the application of the method of
scoring in the context of state space models).

4.2. The monthly inflation data revisited

Let us consider the predicted irregular component of the model
estimated in section 2.2, e, ,. Looking at the global and partial

autocorrelations of ej,_,, it turns out that the 1%, 5", 6" and 8™ all

exceed the confidence limit of two asymptotic standard errors. Also,
the ARCH-LM test is significant at the 99% level up to lag 3. These
results suggest the presence of a CH component which has not been
modelled in the previous analysis. Hence, I include a CPV(r,s)
component in the model estimated in section 2. Again, the order of the
CH component is chosen to minimize the value of the AIC. The
results of the identification procedure are compared with those
obtained using the SC (Table 7). Both the criteria suggest a CPV
component of order (1,0). Table 8 reproduces the ML estimates of the
model parameters and their respective standard errors.

Table 7. AIC and SC values for Structural CPV models

CPV
(r,s) AIC SC
(1,0) -9.1877 -8.9012
(2,0) -9.1054 -8.7501
(1,1) -9.0964 -8.7411
CPY-C
(r,s) AIC SC
(1,1) 9.1315 -8.8564
@21 -9.1090 -8.7995
(1,1) 9.1017 -8.7922
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The predictive performance of the model has been assessed
calculating out of sample k-steps ahead forecasts (k=1,...,10) for the
period from 1999.01 to 1999.10 (Fig. 6) conditioning on the
information available at December 1998. The predicted values follow
the data closely for lead times not greater than 4 months. For k>4 they
tend to interpolate the observed data failing to capture the short term
behaviour of the series. Also, 1-month ahead forecasts have been
recursively calculated for the same period (Fig. 6). These shorter term
predictions result very close to the observed data performing
extremely well in capturing the turning points of the series. The
results (Table 9) have been compared with those obtained using the
GK approach considering four different indices and, namely, the
Mean Sq Ware Error (MSE), the Mean Absolute Error (MAE), the
Mean Absolute Percentage Error (MAPE) and the Theil inequality
coefficient (THEIL).

Table 8. ML parameter estimates and asymptotic standard errors (in
parentheses) for the S-CPV (1,3,12,0,1,0) model

0 0> 03
0.7328 0.0585 -0.4347
(0.0465) (0.0761) (0.0619)
var(qp,) var(q;, ) var( gz, )
4.6747*10-7 6.0238*10-7 4.9952*]0-8
(1.3513*10-7) (1.6668*10-7) (2.3364*10-8)
0'3 var( q:.: ) o
1.3387*10-6 0.1585 0.2045
(2.3573*10-7) (0.0561) (0.0968)

Table 9. Forecast error summary statistics for GK and S-CPV models

Static(1-step ahead) Dynamic (k-steps ahead)
S-CPV GK S-CPV GK
RMSE 0.0006196 0.0012 0.0021 0.0021
MAE 0.0004406 0.0008621 0.0014 0.0015
MAPE 0.0143 0.0261 0.0503 0.0517
THEIL 0.1073 0.2172 0.4201 04319
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The first two forecast error statistics depend on the scale of the
dependent variable. The remaining two statistics are scale invariant.
The Theil inequality coefficient always lies between zero and one,
where zero indicates a perfect fit.

It can be easily observed how the S-CPV model always performs
better than the GK model using only two more parameters than the
latter. The gain obtained by the S-CPV model is particularly evident if
we focus on 1 step ahead forecasts.

Figure 6. V log(CPI-U) series. 1-step ahead (left) and k-steps ahead
(right) predictions from the S-CPV(1,3,12,0,1,0) model for the period
from 99.01 to 99.10; (—) predicted, (-.-) observed, (=-) %2 s.e.
confidence bands.

x10° X 10

5. Concluding remarks

The proposed modelling approach has been found useful for
decomposing and forecasting conditionally heteroskedastic structural
time series with trend, seasonal and autoregressive components. These
features are usually observed in monthly and quarterly inflation data
such as the U.S. monthly inflation series which has been analysed in
this paper. The results obtained show that the S-CPV model not only
gives a satisfactory forecasting performance but also produces a
structural decomposition of the series which is consistent with the
suggestions of economic theory.
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Furthermore, the S-CPV model perfectly fits in a linear Gaussian
state space context. The Kalman filter algorithm is used to compute, at
each time step, the value of the log-likelihood function which is then
maximised using the EM algorithm. This is, at the same time,
computationally efficient and simple to apply, since it requires only
the implementation of a Fixed Interval Smoother and some
straightforward regression calculations.
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