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Summary: In the literature on latent variable models, there is a considerable interest
in estimation methods that do not require parametric assumptions on the latent distri-
bution. In this paper, we focus on a class of item response theory models for ordinal
responses, named graded response models, taking into account a constrained version
with constant discriminating indices. In this class of models, we introduce a conditional
likelihood estimator, which requires no assumptions on the latent distribution. Through
a Monte Carlo study, we compare the behavior of the proposed estimator with that of two
competitors, based on the maximization of the marginal likelihood, which is computed
assuming the normality of the latent variable in one case, and the discreteness of the la-
tent variable in the other case. The method also allows us to implement a Hausman test
to compare the marginal and conditional likelihood estimators, which results in a test
for the normality assumption on the latent distribution. We conclude with an application
based on data coming from the administration of a questionnaire on the perception of
science and technology.

Keywords: Graded response model; Hausman test; Latent class analysis; Rating scale
parametrization.
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1. Introduction

In the Item Response Theory (IRT) literature, several types of models have been pro-
posed for items with ordered response categories; for a review see, among others, van der
Linden and Hambleton (1997) and Nering and Ostini (2010). Among the most popular
ones, there are the Partial Credit Model (PCM - Masters, 1982; see also Andrich, 1978,
for the rating scale version of PCM) and the Graded Response Model (GRM - Same-
jima, 1969), which differ for the type of link function (Agresti, 2002) and for the item
parametrization. PCM is based on logits for adjacent categories, whereas GRM rests on
global logits. Moreover, PCM is characterized by items with the same discriminating
power, whereas in GRM each item has a specific discrimination parameter. The main
consequence of this difference is that PCM may be estimated through the Conditional
Maximum Likelihood (CML) approach, which is a particularly appealing method, as it
does not require any specific assumption about the latent trait distribution, and it is con-
sistent. Since the CML approach cannot be directly applied to GRM, other estimation
methods have to be adopted in this last case, being the Marginal Maximum Likelihood
(MML - Bock and Lieberman, 1970; Bock and Aitkin, 1981) the most popular. The
main drawback of MML is that it is a parametric approach, which is typically based on
the hypothesis of normality of the latent trait distribution and it is, therefore, consistent
only under the correct specification of the distributional assumption. Moreover, MML
requires some computational effort, as quadrature methods are needed for computing
the log-likelihood. Alternatively to the MML, a semi-parametric approach based on as-
suming a discrete latent trait can be also applied, which is more flexible and easier to
implement than MML.

In this paper, we consider a constrained version of GRM consisting in a model with
free item difficulty parameters, whereas all items are assumed to discriminate in the same
way, analogously to PCM. For this restricted class of models, it is possible to specify
a CML estimator, following an approach proposed in a different field by Baetschmann
et al. (2011). The first aim of the paper is to compare, for the restricted class of IRT
models of interest, the performance of the three maximum likelihood approaches at
issue in terms of efficiency and robustness: the parametric MML approach that relies on
the hypothesis of normality of the latent trait, the semi-parametric MML based on the
discreteness of the latent trait, and the non-parametric one based on CML. Furthermore,
we show that the MML and CML estimators can be compared by means of a Hausman
test: MML is consistent and more efficient only when the latent distribution is normal,
whereas CML is robust with respect to departures from normality of the latent trait
but less efficient. Therefore, the Hausman test can be seen as a test for the normality
assumption.

The remainder of the article is organized as follows. In the next section we illustrate
the class of polytomous item response models of interest. Then, we provide a descrip-
tion of the above mentioned maximum likelihood approaches (CML and MML), the
efficiency and robustness of which are compared through a Monte Carlo study. We also
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describe the Hausman test for the normality assumption, which compares the proposed
CML estimator with the two MML estimators. The properties of this test are investi-
gated through a Monte Carlo study. We conclude with an application, based on data
about the perception of science and technology, and with some final remarks.

2. A class of item response models

The class of polytomous item response models on which we base our study relies
on the Graded Response Model (GRM) introduced by Samejima (1969). Let θ indicate
the level of the latent trait Θ and let Xj denote the response variable for the j-th item
(j = 1, . . . , r), which is assumed to have lj categories, indexed from 0 to lj − 1.

GRM is based on the following main assumptions:

• unidimensionality: all test items measure the same latent trait Θ;

• local independence: the response variables X1, . . . , Xr are independently dis-
tributed given Θ, that is,

p(X1, . . . , Xr|θ) =
r∏

j=1

p(Xj |θ);

• monotonicity: p(Xj ≥ x|θ) is nondecreasing in θ, that is,

p(Xj ≥ x|θ1) ≥ p(Xj ≥ x|θ2), j = 1, . . . , r, x = 1, . . . , lj − 1.

for θ1 > θ2.

In particular, GRM is based on the following parametrization:

log
p(Xj ≥ x|θ)
p(Xj < x|θ)

= γj(θ − βjx), j = 1, . . . , r, x = 1, . . . , lj − 1, (1)

where γj measures the discriminating power of item j and βjx corresponds to the dif-
ficulty level of item j and category x. These item difficulty levels satisfy the ordering
βj1 < βj2 < . . . < βj,lj−1. We also observe that the left side of (1) expresses a global
logit, which corresponds to a cumulative logit with opposite sign (according to the def-
inition of cumulative logit by Agresti, 2002) and compares the probability that the item
response is in category x or higher with the probability that it is in a lower category.
This parametrization distinguishes GRM from other types of item response models that
adopt different link functions (i.e., adjacent logits in the case of partial credit models and
continuation ratio logits in the case of sequential models).

In the following, we focus on a special case of GRM in which all the items discrim-
inate in the same way (van der Ark, 2001), that is, we assume that

γj = 1, j = 1, . . . , r.
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We refer to the resulting model as One Parameter GRM (1P-GRM). Moreover, we con-
sider a further special case based on a rating scale parametrization in which the param-
eters βjx are constrained so that the distance between difficulty levels from category to
category is the same for every item. This constraint is expressed as

βjx = βj + τx, j = 1, . . . , r, x = 0, . . . , l − 1,

where βj represents the difficulty of item j and τx indicates the difficulty of response
category x, which is the same for all items. The resulting model is denoted by 1P-RS-
GRM. We note that the rating scale parametrization makes sense only when all items
have the same number of response categories, that is, lj = l, j = 1, . . . , r.

3. Maximum likelihood estimation approaches

Given a sample of observations xij , i = 1, . . . , n, j = 1, . . . , r, different maximum
likelihood estimation methods may be used for the estimation of 1P-GRM and 1P-RS-
GRM. In the following we first describe the standard methods based on a random-effects
formulation, such as the parametric Marginal Maximum Likelihood (MML) method and
its semi-parametric version. Then, we propose an alternative non-parametric approach,
which rests on the Conditional Maximum Likelihood (CML) method.

3.1. Standard methods for maximum likelihood estimation

Among the most well-known estimation methods for IRT models, those based on a
random-effects formulation conceive the ability Θ as a random variable having a certain
distribution. More specifically, under the assumption that Θ is normally distributed, we
can use the MML method (Bock and Lieberman, 1970; Bock and Aitkin, 1981) based
on maximizing the marginal log-likelihood

�M (η) =

n∑
i=1

log

∫
φ(θi; 0, σ

2)

r∏
j=1

p(xij |θi)dθi, (2)

with φ(θi; 0, σ
2) denoting the density function of the distribution N(0, σ2) and where

the parameter vector η contains the item parameters further to the variance of the la-
tent distribution σ2. The main advantage of the MML method is that the parameter
estimates are consistent under the above assumption of normality. However, if this as-
sumption does not hold, parameter estimates are typically biased; moreover, the method
has a certain complexity due to the presence of the integral in expression (2). There
exist several approaches to deal with this integral, such as Gaussian quadrature based
methods (Abramowitz and Stegun, 1965), among which the adaptive Gaussian quadra-
ture (Pinheiro and Bates, 1995), and Monte Carlo based integration methods. Each of
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these methods replaces the integral in (2) by a finite sum and the resulting expression is
then maximized through direct algorithms, such as the Newton-Raphson or the Fisher-
scoring, or indirect algorithms, such as the Expectation-Maximization (EM - Dempster
et al., 1977); see Bacci et al. (2014) and Bartolucci et al. (2014) for an R implementation
of this algorithm. In the case of Gaussian quadrature, the number of terms of this sum is
typically moderate, such as 21.

In order to reduce the dependence of the parameter estimates on parametric assump-
tions about the latent distribution, we can rely on a semi-parametric approach based on
the maximization of the marginal likelihood under the assumption that the latent trait has
a discrete distribution. This distribution is based on k support points ξ1, . . . , ξk, which
identify latent classes of individuals with homogeneous unobservable characteristics,
and corresponding weights π1, . . . , πk, where πc > 0, c = 1, . . . , k, and

∑k
c=1 πc = 1.

The method at issue is denoted as MML-LC and is based on the following marginal
log-likelihood function:

�LC(ψ) =

n∑
i=1

log

k∑
c=1

πc

r∏
j=1

p(xij |θi = ξc), (3)

with the parameter vector ψ including, further to the item parameters, the support points
of the latent distribution and the corresponding weights. The maximization of function
(3) is easier to perform than that of function (2) because it skips the problem of solving
the integral involved in the MML approach. Typically, the maximum of MML-LC is
found through an EM algorithm.

The main drawback of the MML-LC method is the need of choosing properly k. In
this regard, we may use the information criteria, such as AIC (Akaike, 1973) based on
the index

AIC = −2�LC(ψ̂) + 2#par,

or BIC (Schwarz, 1978) based on the index

BIC = −2�LC(ψ̂) + log(n)#par,

where ψ̂ denotes the vector of estimated parameters and #par is the number of free
parameters, seen as a measure of the model complexity. On the basis of these criteria,
the selected number of classes is the one corresponding to the minimum value of AIC
or BIC. It has to be noted that the selected number of classes strongly depends on the
criterion adopted.

Relying on the main results reported in the literature about finite mixture models
(see, among others, McLachlan and Peel (2000), Chapter 8, and the references therein),
we prefer to use BIC rather than AIC. Indeed, BIC tends to select a more parsimonious
model than AIC and so it allows us to limit the instability problems in the maximization
process that may arise with large values of k. On the other hand, using more support
points leads to a more flexible latent distribution. In any case, it may be verified that
the estimates of the parameters involved in the model that are constant across the latent
classes (i.e., βjx) are substantially unaffected by the specific value of k that is selected.
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3.2. Conditional maximum likelihood method

We suggest an alternative to the parametric and semi-parametric MML approaches
for the maximum likelihood estimation of the models illustrated in Section 2. The pro-
posed method is based on CML (Andersen, 1970, 1972; Chamberlain, 1980) and, as
shown in Andersen (1970), it gives a consistent estimator of the βjx parameters under
mild regularity conditions and independently of the true distribution of Θ.

There exist several ways to implement CML with ordered response modalities; see
Baetschmann et al. (2011) for a review in a different context. Here we rely on the idea
of reducing the model of interest to a model for binary data by suitably dichotomizing
the response variables and considering the contributions to the conditional likelihood as
those resulting from all the possible dichotomizations of these variables.

For the case in which the response variables have the same number l of response cat-
egories, we consider the l−1 possible dichotomizations indexed by d = 1, . . . , l−1. For
each dichotomization d we transform the response variables Xj , for every individual, in
the binary variables

Y
(d)
j = 1{Xj ≥ d}, j = 1, . . . , r,

where 1{·} is the indicator function. We then maximize the function given by the sum
of the conditional log-likelihood functions (Andersen, 1970) corresponding to each di-
chotomization:

�C(β) =

l−1∑
d=1

log p(y
(d)
i1 , . . . , y

(d)
ir |y(d)i+ ), y

(d)
i+ =

r∑
j=1

y
(d)
ij . (4)

The method relies on the fact that the dichotomized variable distributions satisfy the
Rasch model (Rasch, 1961)

log
p(Y

(d)
j = 1|θ)

p(Y
(d)
j = 0|θ)

= θ − βjd, j = 1, . . . , r, d = 1, . . . , l − 1.

In fact, it is well known that the total score Y
(d)
+ =

∑r
j=1 Y

(d)
j is a sufficient statistic

for the ability parameter θ (seen as a fixed parameter) and the thresholds; see Andersen
(1970, 1972) and Chamberlain (1980). The resulting conditional probability involved in
�C(β) has expression

p(y
(d)
i1 , . . . , y

(d)
ir |y(d)i+ ) =

exp
(
−
∑r

j=1 y
(d)
ij βjx

)

∑
z:z+=y

(d)
i+

exp
(
−
∑r

j=1 zjβjx

) ,

with
∑

z:z+=y
(d)
i+

extended to all binary vectors z of dimension r with elements summing

up to y
(d)
i+ . Note that since the joint probability of y(d)i1 , . . . , y

(d)
ir does not depend on the
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individual parameters θi, the likelihood function (4) does not depend on the distribution
of the latent trait. In particular, �C(β) only depends on the item parameters (βjx or βj)
collected in β. In fact, different sets of parameters are identifiable under the conditional
approach depending on the estimated model:

• under 1P-GRM, the identifiable parameters are βjx for j = 2, . . . , r and x =
1, . . . , l − 1 (we use the constraint β1x = 0, x = 1, . . . , l − 1);

• under 1P-RS-GRM, the identifiable parameters are βj for j = 2, . . . , r (we use
the constraint β1 = 0), whereas the cut-off points τx are not identified.

Therefore, in the first case β has dimension (r − 1)(l − 1), whereas in the second case
it has dimension r − 1.

Function (4) may be simply maximized by a Newton-Raphson algorithm using the
pseudo-score vector

sC(β) =

n∑
i=1

sC,i(β), sC,i(β) =
∂

∂β
log p(y

(d)
i1 , . . . , y

(d)
ir |y(d)i+ )

and the pseudo-observed information matrix

HC(β) = −
n∑

i=1

∂2

∂β∂β′ log p(y
(d)
i1 , . . . , y

(d)
ir |y(d)i+ ).

Moreover, the asymptotic variance-covariance matrix may be obtained by the sandwich
formula

V̂C(β̂C) = HC(β̂C)
−1S(β̂C)HC(β̂C)

−1,

S(β) =
n∑

i=1

sC,i(β)[sC,i(β)]
′,

and standard errors may be extracted in the usual way from V̂C(β̂C).

4. Simulation study

In this section, we rely on a Monte Carlo simulation study in order to compare
the performance of the estimation approaches described above. We first describe the
simulation setting and, then, we illustrate the main results. All the analyses have been
implemented in the R software.

4.1. Structure of the Monte Carlo study

For the baseline setup of our experiment, we assumed a model for ordinal response
variables with l = 5 categories which is based on assumption (1) with βjx = βj + τx,
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where the βj parameters are fixed as r equidistant points in the interval [−2, 2] and the
cut-off points are τ1 = −2, τ2 = −0.5, τ3 = 0.5, and τ4 = 2. The latent variable Θ is
assumed to have distribution N(0, 1). We run 1000 Monte Carlo replications consider-
ing a number of items r = 5, 10 and sample size n = 1000, 2000.

We repeated the Monte Carlo experiment under different distributions for Θ. In par-
ticular, we assumed a standardized gamma distribution with shape and scale parameters
both equal to 2, denoted by Γ(2, 2). We then considered a symmetric discrete distribu-
tion with probabilities 0.25, 0.5, and 0.25 (LC1) and a skewed discrete distribution with
probabilities 0.4, 0.5, and 0.1 (LC2). In the discrete case, the support points are such
that the resulting distributions are standardized. In this way, we considered 16 different
scenarios overall. As for the basic scenario, for all the drawn samples we fitted models
1P-GRM and 1P-RS-GRM by the MML, MML-LC (where k is chosen by BIC), and
CML methods.

4.2. Simulation results

In the following, a summary of the main simulation results is provided: Table 1
reports the results for 1P-GRM, whereas Table 2 reports those for 1P-RS-GRM. For
each scenario, we considered the estimates of the item parameters βjx for 1P-GRM and
βj for 1P-RS-GRM and we computed the corresponding average values of the absolute
bias and of the Root Mean Squared Error (RMSE). In this way, the performance of each
estimation approach may be evaluated in terms of bias and efficiency.

According to the results in Table 1, the RMSE decreases when the sample size and/or
the number of items increase, independently of the true distribution of Θ and the type
of estimation method. Also the average bias tends to decrease in the presence of higher
values for the sample size and the number of items when CML or MML are adopted,
whereas the behavior of the MML-LC approach significantly depends on the distribution
of the latent trait: the average bias of the item parameter estimates increases when data
come from N(0, 1) or Γ(2, 2) and it decreases when data come from a population having
a discrete distribution.

Concerning the comparison between the three estimation approaches, we note very
similar performances in terms of efficiency, even if some differences can be highlighted.
The MML-LC approach tends to outperform the others in all cases, except with normally
distributed data and n = 2000, when the MML approach is more efficient. Furthermore,
the MML approach is more efficient than the CML approach in the case of latent vari-
ables having normal and symmetric multinomial distributions. As far as the bias of the
estimators, the MML approach provides values of absolute bias that are the best ones for
the normal distribution and, on the contrary, they are the worst ones for the other distri-
butions, especially for Γ(2, 2). Finally, for CML and MML-LC approaches the bias is
negligible.

According to the results in Table 2, referred to 1P-RS-GRM, we draw similar conclu-
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Table 1. Simulation results for 1P-GRM: average values of absolute bias and RMSE for
the estimates of the parameters βjx.

CML MML MML-LC
Distrib. n r abs.bias RMSE abs.bias RMSE abs.bias RMSE
N(0, 1) 1000 5 0.0121 0.1646 0.0112 0.1575 0.0019 0.1569
N(0, 1) 2000 5 0.0043 0.1134 0.0032 0.1080 0.0089 0.1081
N(0, 1) 1000 10 0.0085 0.1549 0.0085 0.1521 0.0156 0.1514
N(0, 1) 2000 10 0.0041 0.1086 0.0038 0.1069 0.0216 0.1083
Γ(2, 2) 1000 5 0.0070 0.1640 0.0634 0.1721 0.0053 0.1568
Γ(2, 2) 2000 5 0.0025 0.1139 0.0618 0.1306 0.0080 0.1098
Γ(2, 2) 1000 10 0.0150 0.1573 0.0474 0.1639 0.0128 0.1543
Γ(2, 2) 2000 10 0.0087 0.1088 0.0455 0.1189 0.0138 0.1074

LC1 1000 5 0.0109 0.1619 0.0221 0.1586 0.0071 0.1572
LC1 2000 5 0.0068 0.1126 0.0183 0.1101 0.0059 0.1077
LC1 1000 10 0.0056 0.1553 0.0144 0.1545 0.0059 0.1526
LC1 2000 10 0.0031 0.1068 0.0099 0.1063 0.0031 0.1050
LC2 1000 5 0.0115 0.1650 0.0305 0.1634 0.0080 0.1587
LC2 2000 5 0.0044 0.1157 0.0251 0.1163 0.0039 0.1116
LC2 1000 10 0.0089 0.1569 0.0199 0.1573 0.0084 0.1544
LC2 2000 10 0.0033 0.1104 0.0174 0.1117 0.0034 0.1089

sions. Indeed, we observe that, as n and/or r increase, RMSE decreases independently
of the estimation method, whereas the average bias decreases for CML and MML, and
it decreases for MML-LC only for data coming from discrete distributions.

The comparison between the three estimation methods does not allow us to conclude
so clearly as in the case of 1P-GRM. On the one hand, MML-LC and MML methods
are more efficient than the CML method and, on the other hand, this last one tends to
be less biased than the two competitors. However, as concerns the comparison between
MML and MML-LC, neither of them has a clearly better behavior.

5. Hausman test for normality of the latent trait

The results of the simulation study illustrated above are in agreement with the fact
that the MML estimator is consistent only when the latent trait is normally distributed.
Under this assumption, it is also more efficient than the competing estimators. On the
other hand, the CML estimator is robust to misspecifications of the latent trait distribu-
tion, although it is less efficient than the MML estimator under normality. These argu-
ments imply that a Hausman (1978) test may be used for the hypothesis of normality of
the latent trait. In the following, we first illustrate this test for the class of models at issue
and, then, we perform a simulation study to investigate the size and power properties of
the proposed test.



10 F. Bartolucci, S. Bacci and C. Pigini.10 F. Bartolucci et al.

Table 2. Simulation results for 1P-RS-GRM: average values of absolute bias and RMSE
for the estimates of the parameters βj .

CML MML MML-LC
Distrib. n r abs.bias RMSE abs.bias RMSE abs.bias RMSE
N(0, 1) 1000 5 0.0042 0.1005 0.0007 0.0955 0.0055 0.0960
N(0, 1) 2000 5 0.0012 0.0693 0.0030 0.0645 0.0078 0.0653
N(0, 1) 1000 10 0.0022 0.0923 0.0013 0.0872 0.0168 0.0902
N(0, 1) 2000 10 0.0013 0.0637 0.0009 0.0623 0.0199 0.0647
Γ(2, 2) 1000 5 0.0000 0.0988 0.0130 0.0945 0.0075 0.0940
Γ(2, 2) 2000 5 0.0015 0.0690 0.0125 0.0648 0.0105 0.0663
Γ(2, 2) 1000 10 0.0078 0.0920 0.0055 0.0883 0.0109 0.0890
Γ(2, 2) 2000 10 0.0046 0.0648 0.0067 0.0615 0.0154 0.0640

LC1 1000 5 0.0000 0.0978 0.0043 0.0905 0.0020 0.0945
LC1 2000 5 0.0037 0.0693 0.0040 0.0640 0.0025 0.0650
LC1 1000 10 0.0021 0.0947 0.0064 0.0896 0.0019 0.0801
LC1 2000 10 0.0011 0.0646 0.0027 0.0602 0.0012 0.0620
LC2 1000 5 0.0040 0.1003 0.0095 0.0955 0.0008 0.0953
LC2 2000 5 0.0028 0.0718 0.0082 0.0705 0.0038 0.0678
LC2 1000 10 0.0038 0.0951 0.0042 0.0886 0.0032 0.0819
LC2 2000 10 0.0007 0.0662 0.0031 0.0639 0.0011 0.0638

5.1. The proposed test

The proposed Hausman (1978) test is based on the comparison between two estima-
tors: one is consistent and more efficient under the null hypothesis, such as the MML
estimator under the hypothesis of normality; the other is always consistent but less effi-
cient under the null hypothesis, such as the CML estimator. Therefore, in this context,
this is a test for the assumption of normality of the latent trait.

The test statistic is defined as

T = (β̂M − β̂C)
′Ŵ

−1
(β̂M − β̂C), (5)

with β̂M and β̂C being the estimators of β based on the MML method and the CML
method, respectively. We recall that this parameter vector has different elements ac-
cording to the adopted model (see Section 3.2); furthermore, β̂M is the MML estimator
of this parameter vector obtained from η̂M taking into account the identifiability con-
straints adopted under each model specification. Besides, Ŵ is the estimator of the
variance-covariance matrix of β̂M − β̂C obtained starting from the following sandwich
formula:
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V̂

(
η̂M

β̂C

)
=

(
HM (η̂M ) O

O HC(β̂C)

)−1

S

(
η̂M

β̂C

)(
HM (η̂M ) O

O HC(β̂C)

)−1

,

S

(
η̂M

β̂C

)
=

n∑
i=1

(
sM,i(η̂M )

sC,i(β̂C)

)(
[sM,i(η̂M )]′ [sC,i(β̂C)]

′
)
.

The matrix Ŵ is obtained by the transformation

Ŵ = DV̂ D′,

with D =
(
E −I

)
, where I is identity matrix of dimension (r−1)(l−1) for 1P-GRM

and of dimension l − 1 for 1P-RS-GRM, and E is a matrix such that β̂M = Eη̂M .
Under the null hypothesis of normality of the latent trait, the test statistic T has

asymptotic χ2 distribution with a number of degrees of freedom equal to (r−1)(l−1) for
1P-GRM and to r − 1 for 1P-RS-GRM. Also note that the test statistic proposed above
relies on a more general expression than the original formulation of Hausman (1978)
because Ŵ is not simply the difference between two asymptotic variance-covariance
matrices.

5.2. Simulation study about the Hausman test properties

Table 3 reports the results of a Monte Carlo simulation that investigates size and
power properties of the Hausman test based on statistic (5) under 1P-GRM. We used the
same design described in Section 4.1.

The results in Table 3 show that the test has overall good size properties: the rejection
rate approaches the nominal value of 0.05 with both sample sizes (n = 1000, 2000)
when r = 5; in contrast, increasing the number of items, while holding the sample size
equal, leads the test statistic to slightly under-reject the null hypothesis of normality.
Nevertheless, the nominal size 0.05 always lies within the 99% confidence interval based
on the corresponding empirical size.

The test also exhibits good power against the Γ distribution for the latent trait. In
particular, under this distribution, the rejection rate considerably increases with the sam-
ple size, while it seems to be invariant to the number of items. The same pattern arises
when the distribution of the latent trait is discrete and symmetric: in this case, however,
the rejection rate slowly increases with the sample size. Power is considerably higher
when the discrete distribution is asymmetric and it increases with both sample size and
number of items.
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Table 3. Simulation results for the Hausman test under 1P-GRM: empirical size and
power.

Empirical size at 0.05 nominal value

Distribution n r = 5 r = 10

N(0, 1) 1000 0.058 0.027
N(0, 1) 2000 0.059 0.034

Power at 0.05 nominal value

Distribution n r = 5 r = 10

Γ(2, 2) 1000 0.648 0.645
Γ(2, 2) 2000 0.981 0.992

LC1 1000 0.150 0.104
LC1 2000 0.254 0.238

LC2 1000 0.178 0.216
LC2 2000 0.378 0.505

6. Application

In order to illustrate the proposed approach, we consider the Science dataset (avail-
able in R package ltm; Rizopoulos, 2006) referred to a sample of n = 392 individuals
from UK, extracted from the Consumer Protection and Perceptions of Science and Tech-
nology section of the 1992 Euro-Barometer Survey (Karlheinz and Melich, 1992). The
dataset concerns the responses to r = 7 items with l = 4 ordered response categories
(0=strongly disagree, 1=disagree to some extent, 2=agree to some extent, and 3=strongly
agree):

• Comfort: Science and technology are making our lives healthier, easier and more
comfortable.

• Environment: Scientific and technological research cannot play an important role
in protecting the environment and repairing it.

• Work: The application of science and new technology will make work more in-
teresting.

• Future: Thanks to science and technology, there will be more opportunities for
the future generations.

• Technology: New technology does not depend on basic scientific research.
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Table 4. Estimates of the item parameters from the CML and MML methods under the
constraint βj1 = 0, j = 1, . . . , r (in brackets the standard errors based on the observed
information matrix).

CML

1st cut-off 2nd cut-off 3rd cut-off

Environment 4.290 (0.558) 3.372 (0.233) 1.657 (0.273)
Work 2.238 (0.543) 1.714 (0.218) 0.755 (0.211)
Future 1.226 (0.556) 1.075 (0.205) -0.129 (0.194)
Technology 4.255 (0.549) 3.510 (0.245) 2.282 (0.315)
Industry 4.855 (0.557) 4.411 (0.267) 3.009 (0.420)
Benefit 1.696 (0.491) 1.584 (0.208) 0.217 (0.198)

�̂C = −1549.985

MML

1st cut-off 2nd cut-off 3rd cut-off

Environment 3.794 (0.467) 3.387 (0.214) 1.408 (0.235)
Work 1.996 (0.489) 1.697 (0.211) 0.658 (0.197)
Future 1.043 (0.530) 1.062 (0.218) -0.081 (0.177)
Technology 3.771 (0.467) 3.536 (0.216) 1.951 (0.277)
Industry 4.223 (0.467) 4.407 (0.235) 2.532 (0.348)
Benefit 1.503 (0.507) 1.585 (0.212) 0.203 (0.183)

�̂M = −3033.693

• Industry: Scientific and technological research do not play an important role in
industrial development.

• Benefit: The benefits of science are greater than any harmful effect it may have.

Categories of the 2nd, 5th, and 6th items were reversed before parameter estima-
tion in order to have all item response categories ordered in the same way. Then, we
estimated 1P-GRM on the resulting data adopting the CML and MML methods. Ta-
ble 4 reports the estimates of the 18 parameters βjx, taking into account the required
identifiability constraints, that is, under the constraint β1x = 0, x = 1, . . . , l − 1.

On the basis of the results in Table 4 and using the proper standardization matrix Ŵ ,
we computed the Hausman test statistic which is equal to t = 54.107. The corresponding
p-value is equal to:

P
(
χ2
18 ≥ t

)
< 0.001,
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Table 5. Estimates of the item parameters from the MML-LC method under the con-
straint βj1 = 0, j = 1, . . . , r (in brackets the standard errors computed by a parametric
bootstrap method based on 199 replications).

MML-LC

1st cut-off 2nd cut-off 3rd cut-off

Environment 3.798 (0.471) 3.340 (0.227) 1.502 (0.257)
Work 2.015 (0.485) 1.714 (0.211) 0.691 (0.211)
Future 1.047 (0.524) 1.075 (0.242) -0.083 (0.188)
Technology 3.780 (0.455) 3.483 (0.222) 2.078 (0.300)
Industry 4.222 (0.458) 4.365 (0.251) 2.639 (0.364)
Benefit 1.510 (0.522) 1.594 (0.224) 0.215 (0.198)

�̂LC = −3016.362

which leads to rejecting the hypothesis of normality.
We then estimated the model by the MML-LC method with a number of latent

classes k = 3, which was selected on the basis BIC (see Section 3.1); this model has a
maximum log-likelihood equal to �̂LC = −3016.362, which is higher than that obtained
under the MML method (see Table 4). The estimates of the item parameters obtained by
the MML-LC method are a compromise between those obtained by the MML method
and the CML method (see Table 5), but they seem in general closer to the MML es-
timates. However, we noticed that increasing the number of support points k leads to
estimates closer to those obtained with the CML method; this is in agreement with well-
known results about the coincidence between CML estimates and MML-LC estimates
for the Rasch model (Lindsay et al. 1991) when k is large enough.

Based on the results of the MML-LC model, we can cluster individuals in 3 latent
classes, which are associated with different levels of the latent trait (Table 6). The la-
tent distribution is standardized and results to be skewed, with skewness index equal to
0.996. Class 2 is the most representative, with almost 90% of subjects belonging to this
class. Class 1 gathers the 8.4% of individuals with the lowest level of the latent trait,
whereas class 3 collects the remaining 4.3% of individuals, which have the highest level
of accordance along the latent trait.
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Table 6. Estimates of support points and weights from the MML-LC method with k = 3.

c ξ̂c π̂c

1 -2.288 0.084
2 0.044 0.873
3 3.607 0.043

7. Conclusions

In this paper, we propose a method for estimating the parameters of a constrained
version of Graded Response Model (GRM - Samejima, 1969; van der Ark, 2001). Un-
der the assumption of equal discriminating power of all items, we are able to introduce a
Conditional Maximum Likelihood (CML) estimation approach, implemented in a simi-
lar way as in Baetschmann et al. (2011).

The CML approach provides an estimator that is easy to implement and is non-
parametric, in the sense that it does not require distributional assumptions on the latent
trait since sufficient statistics for the individual effects exist. On the other hand, the
Marginal Maximum Likelihood (MML) estimator (Bock and Lieberman, 1970; Bock
and Aitkin, 1981), which is commonly used for GRM, relies on the normality assump-
tion of the latent trait for consistency and requires the use of quadrature techniques to
compute the log-likelihood function. An interesting alternative to the MML estimator
is represented by the estimator based on the discreteness distribution of the latent trait
(MML-LC - Bacci et al., 2014; Bartolucci et al., 2014). The MML-LC estimator allows
us to remove the dependence on the normality assumption and it is less computationally
demanding.

We compared the performance of the CML estimator with that of the two competi-
tors, MML and MML-LC, through a Monte Carlo study. The results of this experiment
confirm that the CML estimator is robust to departures from normality of the latent trait
and that there is not a significant loss of efficiency compared to the MML estimator
under normality.

In this context, we also propose a Hausman (1978) test to compare the CML and
the MML estimators. Given that their behavior depends on the distribution of the latent
trait, the Hausman test can be seen as a normality test. We computed the test statistic
using data from the Consumer Protection and Perceptions of Science and Technology
section of the 1992 Euro-Barometer Survey. In this case, the hypothesis of normality is
rejected and we find that the semi-parametric MML-LC method, with a suitable number
of latent classes, is an interesting alternative to MML.

To conclude, we outline that, in the longitudinal setting, a recent work by Skrondal
and Rabe-Hesketh (2013) has proved the robustness of the CML estimator in comparison
to the MML one in presence of data missing not at random. For a further developments
of our work, it is worth to study this aspect with reference to proposed CML estimator
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in the item response setting.
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Abstract We introduce a new type of logits: the nested continuation logits, which are
a generalization of the well-known continuation logits and we show that these logits
reflect a sequential process that may be used by an individual to select a category of an
ordinal variable. Logit models based on the nested continuation logits are also discussed
to take into account the effect of categorical covariates.
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1. Introduction

In many applications, respondents are asked to select among a list of ordered cate-
gories to express their personal level of agreement or opinion about attitudes, lifestyles,
services, items etc., and the choice among the ordered alternatives may stem from quite
different mechanisms. We assume a selection process such that every respondent makes
a decision by discarding consecutive categories, starting from the first in the list, until
the category that reflects his/her status is reached.

Let A denote an ordinal variable with categories in A = {a1, a2, ..., aJ}.

At the j-th step, j = 1, 2, ..., J , given that categories a1, a2, ..., aj−1 have been
discarded, the sequential selection process stops by selecting aj with probability pj
(pJ = 1) or continues towards higher categories.

Thus, the probability of selecting aj is given by πj = (1−p1)(1−p2).....(1−pj−1)pj
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and, in terms of the continuation logits (Agresti, 2010) ηj = log
pj

1−pj
, is

πj =
exp(ηj)∏j

l=1(1 + exp{ηl})
, j = 1, 2, ..., J − 1, πJ =

1∏J−1
l=1 (1 + exp{ηl})

. (1)

In the special case of pj = p, i.e. when the odds of attaining level aj rather than a higher
level are equal for all j, the probabilities of the categories become: πj = (1 − p)j−1p,
j = 1, 2, ..., J − 1, and πJ = (1 − p)J−1, that are the probabilities of a censored
Geometric (or Pascal) variable with parameter p.

The sequential mechanism of selection seems the most natural as it respects the
way of reading from left to right commonly used. It is particularly motivated when the
selecting mechanism is naturally sequential, that is when the categories can be reached
only successively, for example, the level of learning reaches the advanced state only after
the intermediate state. Otherwise, the sequential selection procedure can be forced by
the design of the questionnaire, for example, when a customer is first invited to manifest
his/her dissatisfaction or satisfaction, and successively, if satisfied, to express his/her
(low, high) degree of satisfaction.

This paper extends the use of the mentioned choice method to a multistage selec-
tion process. In certain cases, in fact, the final choice can be made via subsequent
stages where, at each stage, the selection moves through sequential discards from left to
right among the alternatives. More specifically, the first stage begins with the sequential
choice of an interval of categories among those that partition A, then at each consecutive
stage, an interval of categories is sequentially chosen among those that form a partition
of the interval selected at the previous stage. This selection process iterates until one
category is chosen.

Consider, for example, a respondent who is asked to declare his level of job satisfac-
tion on a scale of ten ordered categories: extremely dissatisfied (ED), very dissatisfied
(V D), dissatisfied (D), moderately dissatisfied (MD), a little dissatisfied (LD), a little
satisfied (LS), moderately satisfied (MS), satisfied (S), very satisfied (V S), extremely
satisfied (ES). Suppose he is happy with his job. At the first sight, he can restrict his
selection to the last five categories representing the positive opinion, by refusing the first
five categories on the negative side. At the second step, he can realize to be a little sat-
isfied, for example, concluding the selection, or alternatively he can discard the first two
mild positions: a little satisfied, moderately satisfied and orient his choice to the set of
categories expressing a stronger feeling: satisfied, very satisfied, extremely satisfied, and
finally he can decide to select the category satisfied which better represents his status.

We show that this multistage choice method corresponds to a particular type of log-
its, the nested continuation logits, which will be the focus of the next section. A two
stage approach related to that proposed in this paper has been discussed by Fahrmeir
and Tutz (2001, ch. 3) and by Tutz (2013, ch. 9), among others.

Other kinds of nested models have been described by McCullagh and Nelder (1989)
to emphasize the nested or hierarchical structure of the response categories when these
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can be considered also as categories of different response variables at successive levels
of a hierarchy.

We will consider also the possibility that covariates can affect the selection process
at certain stages only. For example, the probability of being satisfied about own job can
vary if the respondent is male or female, but when the set of categories describing the
positive opinion is selected at the first stage, the probability to declare successively an
extreme satisfaction instead of a simple satisfaction can be independent of the gender of
the respondent. This further possibility strengthens the relevance of taking into account
the sequence followed by an interviewee in responding to an item.

The rest of the paper is organized as follows. Section 2 introduces the nested contin-
uation logits and Section 3 describes how to model the effects of qualitative covariates
on the proposed logits. Section 4 is devoted to the estimation of parameters and an
example is illustrated in Section 5.

2. Nested continuation logits

When A is an ordinal variable with categories in A = {a1, a2, ..., aJ} and πj =
P (A = aj), j = 1, 2, ..., J , the probability of a subset I of categories is denoted by
P (I) =

∑
j∈I πj .

A family I of sets of contiguous categories Ii,k = {ai, ai+1, ..., ak}, i < k, asso-
ciated to the ordinal variable A, is called hierarchical if A ∈ I and contains intervals
which are nested or disjoint, i.e. for every pair of sets Ii,k, Il,m belonging to I, it holds
that Ii,k ∩ Il,m ∈ {∅, Ii,k, Im,l}. Furthermore, S = {{aj} : j = 1, 2, ..., J} denotes
the family of singletons. Let Pi,k = {Si,k

h , h = 1, 2, ..., li,k} be the family of the sets
belonging to I ∪ S that are maximal subsets of Ii,k. The sets in Pi,k constitute a parti-
tion of Ii,k. Moreover, the sets Si,k

h , h = 1, 2, ..., li,k are ordered so that for m > n the
categories in Si,k

n precede those in the set Si,k
m .

In the previous example of job satisfaction, A = I1,10 = {ED, V D,D,MD,LD,
LS,MS, S, V S,ES} contains 10 categories. The set A can be partitioned in I1,5 =
{ED, V D, D,MD,LD} and I6,10 = {LS,MS, S, V S,ES}. Then, I1,5 can be parti-
tioned in I1,4 = {ED, V D, D,MD} and {LD}; while I6,10 in {LS}; {MS}; I8,10 =
{S, V S, ES}. So, in this example, the family I is defined as I = {I1,10, I1,5, I6,10, I1,4,
I7,10}.

The family I can be described by a tree where A is the root node, every interval Ii,k
is an intermediate node, the elements of Pi,k are the children of the node Ii,k and the
terminal nodes are the singletons belonging to S . Therefore, the selection process can
be seen as a path that leads to a terminal node of a tree starting from the root node. For
the example of job satisfaction, the tree is displayed in Figure 1.

The definition of the hierarchical family I implies that for every category aj ∈ A, a
sequence of sets Iil,kl

, l = 1, 2, ..., rj + 1, with rj ≥ 0, of I exists such that

{aj} ⊂ Ii1,k1
⊂ Ii2,k2

⊂ Ii3,k3
⊂ .... ⊂ Iirj+1,krj+1

= A, (2)
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A

ED, V D,D,MD,LD LS,MS, S, V S,ES

ED, V D,D,MD S, V S,ES

S V S ESMSLSDVDED LDMD

Figure 1. A tree representing a respondent’s multistage selection process to express own
opinion on the job satisfaction

and, moreover, Iil,kl
is the maximal subset of Iil+1,kl+1

containing aj and belonging to
I. As a consequence of (2), it is immediate to get the probability

πj = P (Iirj ,krj
|A)P (Iirj−1,krj−1

|Iirj ,krj
)....P (Ii1,k1

|Ii2,k2
)P ({aj}|Ii1,k1

), (3)

j = 1, ..., J.
The hierarchy (2) corresponds to a path in a tree, as that illustrated in Figure 1, and

there is a probability (3) associated to every path in a tree.
The factorization in (3) reflects a multistage process leading to the choice of a cate-

gory on an ordered scale. The sequential mechanism selects: at the first stage, Iirj ,krj

among the sets in I ∪S that partition A; at the second stage, Iirj−1,krj−1 among the sets
of Pirj ,krj

, and so on. Finally, the last stage ends with the choice of a category aj from
the minimal set Ii1,k1

. Note that the multistage selection process simplifies into a two
stage approach if the subsets of A, belonging to the hierarchical family I, are disjoint.
In this case, if at the first stage one interval is selected, at the second stage a category is
chosen.

If the sequential mechanism described in Section 1 applies to the sets Si,k
h , Si,k

h ∈
Pi,k, the logits associated to each set Ii,k ∈ I are the nested continuation logits so
defined

η(i, k;h) = log
P (Si,k

h )

P (∪li,k
l=h+1S

i,k
l )

, h = 1, 2, ..., li,k − 1, (4)

from which it is easy to get the probabilities

P (Si,k
h |Ii,k) =

exp{η(i, k;h)}∏h
l=1(1 + exp{η(i, k; l)})

, h = 1, 2, ..., li,k − 1. (5)

In particular, when Ii,k = {ai, ai+1, ..., ak} is a minimal set of I, the family Pi,k

involves only the singletons {aj}, j = i, i+ 1, ...., k and equations (4) and (5) simplify
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to
η(i, k;h) = log

πi−1+h∑k−i
l=h πi+l

, h = 1, 2, ..., k − i,

and

P ({ai−1+h}|Ii,k) =
exp{η(i, k;h)}∏h

l=1(1 + exp{η(i, k; l)})
, h = 1, 2, ..., k − i.

A general expression of (3) in terms of nested continuation logits (4) is described in
the Proposition below where the boolean function δ(·) is equal to 1 when the argument
is true and 0 otherwise.

Proposition 1. The probabilities πj , j = 1, 2, ..., J, can be computed from the nested
continuation logits η(i, k;h), Ii,k ∈ I, h = 1, 2, ..., li,k − 1 described in (4) as follows

πj =
∏

Ii,k∈I

∏li,k−1
h=1 exp{δ(aj ∈ Si,k

h )η(i, k;h)}
∏li,k−1

h=1 (1 + exp{η(i, k;h)})δ(aj∈∪
li,k
l=hS

i,k
l )

. (6)

Proof. A factor in the outer product (6) is equal to one if aj /∈ Ii,k so the product
can be restricted to the sets of I that contain aj and can be ordered as shown in (2). For
each of these sets, the probability P (Iirj−1,krj−1 |Iirj ,krj

) is calculated according to (5)
and the Proposition follows by (3).

The logits so far described are not limited to the selection scheme that starts from
lower category or intervals in an ordered list and proceeds toward higher categories
or intervals. For example, when the sets, belonging to the hierarchical family I, are
I1,j = {a1, a2, ..., aj}, j = 2, 3, ..., J , the underlying multistage selection mechanism
leads to discard categories sequentially starting from the last one in the ordered scale.
This shows that the reverse continuation logits can be seen as a special case of the nested
continuation logits (4).

Moreover, by using the sets of categories below and above the median, the family I
involving the following intervals can be defined

a) the interval A,

b) the intervals on the left of the median: I1,j = {a1, a2..., aj}, j = 2, 3, ...,m,
where m = J

2 if J is even and m = J−1
2 if J is odd,

c) the interval on the right of the median: Im,J = {am, am+1..., aJ}, where m =
J+2
2 if J is even and m = J+3

2 if J is odd.

According to this family, the sets of categories on the left or on the right of the me-
dian are selected at the first stage (if J is odd the category a J+1

2
is selected or discarded

at this stage). Then, if the categories below the median are chosen, the selection pro-
ceeds from the highest category to the lowest, otherwise it proceeds in the inverse order
from the lowest to the highest one.
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The next example illustrates how to construct the logits following the scheme of
selection described.

Example 1. With respect to the variable Political Orientation with 7 categories: ex-
tremely liberal (EL), liberal (L), slightly liberal (SL), moderate (M ), slightly conser-
vative (SC), conservative (C), extremely conservative (EC), we model the behavior of
respondents who, when the median category moderate is discarded, continue the selec-
tion by moving on the left or on the right as described above. By this scheme, the sets in I
are I1,7 = A = {EL,L, SL,M, SC,C,EC}, I1,3 = {EL,L, SL}, I1,2 = {EL,L},
and I5,7 = {SC,C,EC}.

The set P1,7 contains S1,7
1 = I1,3, S1,7

2 = {M} and S1,7
3 = I5,7. In this case, the

nested continuation logits associated to the set I1,7 are

η(1, 7; 1) = log
π1 + π2 + π3

π4 + π5 + π6 + π7
, η(1, 7; 2) = log

π4

π5 + π6 + π7
. (7)

The logits corresponding to the sets I1,3, I1,2 are of reverse continuation type

η(1, 3; 1) = log
π3

π1 + π2
, η(1, 2; 1) = log

π2

π1
, (8)

whereas the nested continuation logits for the conservative set I5,7 are

η(5, 7; 1) = log
π5

π6 + π7
, η(5, 7; 2) = log

π6

π7
. (9)

3. Logit models

Let Xj , j = 1, 2, ..., q, be a set of categorical covariates. The categories of Xj are 
denoted by xji : i = 1, 2, ..., sj , j = 1, 2, ..., q.

A configuration x1i1 , x2i2 , ..., xqiq of the covariates is denoted by the vector i =
(i1, i2, ..., iq)

′. If M ⊂ V = {1, 2, ..., q} then iM denotes the vector with components
ij : j ∈ M. If iM∪N is a vector such that iM = hM, iN = kN , with disjoint sets
M,N , we also write iM∪N = (hM,kN ). Every Xj has a baseline category, usually
the first one, indicated as i∗j . Thus, any configuration which includes categories xji for
j /∈ S, S ⊂ V, at the baseline value is denoted by (iS , i∗V\S).

A nested continuation logit computed in the distribution of A conditioned on the
configuration i of the covariates is denoted by η(i, k;h|i).

In order to model the dependence of the probabilities on the conditioning categories
i, we adopt the usual factorial expansion

η(i, k;h|i) =
∑
Q⊆V

θQ(i, k;h|iQ). (10)
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The Möbius inversion theorem (Lauritzen, 1996) ensures that

θQ(i, k;h|iQ) =
∑
H⊆Q

(−1)|Q\H|η(i, k;h|iH, i∗V\H). (11)

A useful restriction that considerably simplifies the model is the hypothesis of additivity
of the effects of the explanatory variables. This additive dependence allows the nested
continuation logits to be expressed by a sum of main effects

η(i, k;h|i) = θ∅(i, k;h) +

q∑
j=1

θj(i, k;h|ij), (12)

where θ∅(i, k;h) = η(i, k;h|i∗) and θj(i, k;h|ij) = η(i, k;h|i1, i2, ..., i∗j , ..., iq) −
η(i, k;h|i∗) are nested continuation baseline log-odds ratios according with the termi-
nology adopted by Cazzaro and Colombi (2013).

Other interesting hypotheses concern the possibility that some or all the covariates
influence the conditional probabilities in the product (3) only from (up to) a certain
point in the chain. This means that the covariates can affect the choice in the sequential
process of selection from the beginning until a stage or starting from a certain stage up
to the final choice.

More specifically, two kinds of independence of the response from covariates will
be considered.

Let XC = {Xj , j ∈ C}, C ⊆ V , be a subset of covariates and C̄ be the family of the
non empty proper and improper subsets of V \ C.

Given an interval of categories Ii,k ∈ I, let I−
i,k be the subfamily of I containing

the sets Im,n such that Im,n ⊆ Ii,k. The constraints

θQ(m,n;h|iQ) = 0, Im,n ∈ I−
i,k, Q /∈ C̄, (13)

state that the covariates in XC do not affect the probabilities of singletons and intervals
Im,n that are subsets of Ii,k.

In the contingency tables where A assumes the categories involved in Ii,k only,
this hypothesis corresponds to the independence of the response from the covariates
in XC , conditionally on the remaining covariates. For instance, the covariate Religion
(Catholics, not Catholics) may affect the Opinion on teenage birth control (strongly
agree, agree, disagree, strongly disagree) in the sense that probabilities of being in
agreement {strongly agree, agree} or to disagree, or to strongly disagree with the teenage
birth control can vary if the respondent is Catholic or not, but given that the respondent
is in agreement, the probabilities of having a strong or mild position do not depend on
whether the respondent is Catholic or not.

Another kind of independence considers the family I+
i,k, I+

i,k ⊂ I, of intervals Im,n

that are not subsets of a given interval Ii,k, i.e. Im,n � Ii,k.
According to the constraints

θQ(m,n;h|iQ) = 0, Im,n ∈ I+
i,k, Q /∈ C̄, (14)
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the covariates in XC influence the choice inside the interval Ii,k, but not outside. So
that, in the subtable where the categories belonging to Ii,k are collapsed in one category,
A is independent of the covariates in XC , given the remaining covariates.

For example, the choice among the liberal ({EL,L, SL}), moderate (M), slightly
conservative (SC), conservative, (C), and extremely conservative (EC) political atti-
tudes may not depend on the Opinion on teenage birth control (strongly agree, agree,
disagree, strongly disagree), but when liberal side is chosen, the probabilities of belong-
ing to one of the 3 groups, from slightly (SL) to extremely liberal (EL) people, may vary
according to the degree of agreement on birth control.

The previous hypothesis can be extended to two disjoint intervals Ii1,k1 and Ii2,k2 ,
as follows

θQ(m,n;h|iQ) = 0, Im,n ∈ I+
i1,k1

∩ I+
i2,k2

, Q /∈ C̄. (15)

In the subtable where the categories belonging to Ii1,k1 are collapsed into one category
and the categories of Ii2,k2 are collapsed into one category, the previous constraints
correspond to the independence of the response from the covariates in the set XC , given
the remaining covariates. The extension to more than two disjoint intervals of categories
is straightforward.

Similar hypotheses formulated on variables with partially ordered categories have
been also examined by Cazzaro and Colombi (2013), who introduced a parameteriza-
tion of multi-way contingency tables based on nested baseline logits and higher order
marginal interactions defined with respect to families of category sets with the same
structure of I.

The linear model (10) can be obviously extended to include continuous covariates
and, as in the case of categorical covariates, they can affect the response inside and/or
outside a given interval Ii,k.

4. Maximum likelihood estimation

The vector η of the nested continuation logits can be written as follows

η = C logMπ (16)

coherently with Colombi and Forcina (2001), Bartolucci et al. (2007).
The rows of the matrix C are linearly independent contrasts and the matrix M , with

elements equal to 0 or 1, depends on the nested continuation logits that are used.
Let θ be the vector of the factorial effects introduced in (10). The hypotheses il-

lustrated in the previous section, that constrain the nested continuation logits, can be
described as: η = Xθ. The design matrix X depends on the interaction effects that are
not set to zero.

Under the product-multinomial sampling, this model defined by linear constraints
on the nested continuation logits, is a special case of the HLP model described by Lang
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(2005) and the asymptotic results and the testing procedures of Lang (2004, 2005) apply
also to this context (see also Cazzaro and Colombi, 2009).

With respect to the Lang’s work we note that the link function η = C logMπ is
invertible.

The parameters vector θ can be estimated using the algorithm described by Colombi
and Forcina (2001) and Lang (2004, 2005). Models specified by linear constraints on
nested continuation logits can be easily estimated and tested by using the R-package
hmmm by Colombi et al. (2012).

The method implemented in hmmm is based on the constrained formulation

UC logMπ = 0 with UX = 0 (17)

and has the advantage of being applicable to a large variety of marginal models even
when an explicit expression of the probabilities in terms of marginal parameters is not
available. For example, a multi-way contingency table of ordered variables can be pa-
rameterized by the Gloneck-McCullagh marginal parameters (Gloneck and McCullagh,
1995) where the logits defined in the univariate distributions are of the nested continua-
tion type. However, in the univariate case, the expression of the probabilities in terms of
nested continuation interactions (6) allows also an explicit parametrization of the prob-
abilities in function of the non null interactions of θ and the resort to an unconstrained
maximization of the log-likelihood function. This approach is necessary when contin-
uous covariates are involved in the linear predictor (10). In such a case, in fact, the
number of restrictions on the parameters in the constrained formulation (17) would be
extremely large.

5. Example

Consider the three-dimensional table reported in Bergsma et al. (2009) p. 30, also
available in the R-package hmmm, where a sample of 911 U.S. citizens is classified
according to their Political orientation Pol, Religion Rel and Opinion on teenage birth
control Birth. In particular, the variable Pol, described in Example 1, has 7 categories
from extremely liberal to extremely conservative, Rel has 3 categories Catholics, Protes-
tants and None, Birth 4 categories ranging from strongly agree to strongly disagree.

The main question is to investigate whether the covariates Birth and Rel condition
the respondents’ political opinion, in the first choice among the three political positions
liberal = {EL,L, SL}, moderate = {M}, conservative = {SC,C,EC}, and/or in
the second step in declaring the intensity of their own orientation from a simple to an
extreme belief. In this regard, to study the effects of the covariates Birth and Rel, sepa-
rately on the position and on the intensity of the response Pol, it is convenient to use the
nested continuation logits (7, 8, 9) and hypotheses corresponding to the constraints (13,
14, 15) will be tested.

Table 1 illustrates the tested hypotheses. Every row refers to one hypothesis, and
for each hypothesis the columns report: the nested continuation logits (first column)
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Table 1. Hypotheses testing results: the logits hypothesized to be independent of the
covariates, likelihood ratio statistic test, degrees of freedom and p-values

Logits Covariates LRT df p-value

η(1, 7; 1), η(1, 7; 2)

Birth 17.6883 18 0.4763

Rel 254.4908 16 0.0000

Birth, Rel 261.5026 22 0.0000

η(1, 2; 1), η(1, 3; 1)

Birth 34.7838 18 0.0101

Rel 267.8825 16 0.0000

Birth, Rel 298.4026 22 0.0000

η(5, 7; 1), η(5, 7; 2)

Birth 25.1237 18 0.1252

Rel 139.3793 16 0.0000

Birth, Rel 150.4783 22 0.0000

η(1, 7; 1), η(1, 7; 2), η(1, 2; 1), η(1, 3; 1)
Birth 52.4722 36 0.0374

Rel 522.3733 32 0.0000

Birth, Rel 559.9052 44 0.0000

η(1, 7; 1), η(1, 7; 2), η(5, 7; 1), η(5, 7; 2)
Birth 42.8121 36 0.2019

Rel 393.8701 32 0.0000

Birth, Rel 411.9808 44 0.0000

hypothesized to be independent of the covariates indicated in the second column, the
value of the likelihood ratio statistic test (LRT), the degrees of freedom (df ) and the
p-value.

Let us start by testing if respondents at first declare their political belief choos-
ing one of the three sets: liberal = {EL,L, SL}, moderate = {M}, conservative
= {SC,C,EC}, independently of their opinion on the teenage Birth control.

Constraints of type (15) are imposed under this hypothesis. Null values are assigned
to the interactions of the factorial expansion (10) of the logits associated to sets belong-
ing to I+

1,3 ∩ I+
5,7, that in this case are the nested continuation logits (7) defined on the

set I1,7. These interactions are: the 6 main effects, i.e. nested continuation-baseline
log-odds ratios

θ1(1, 7; 1|i1, i∗2) = η(1, 7; 1|i1, i∗2)− η(1, 7; 1|i∗1, i∗2) (18)

θ1(1, 7; 2|i1, i∗2) = η(1, 7; 2|i1, i∗2)− η(1, 7; 2|i∗1, i∗2) (19)

for i1 = 2, 3, 4, i∗1 = 1, i∗2 = 1, and the 12 interactions of second order which are
contrasts of the logits (7)

θ12(1, 7; 1|i1, i2) = η(1, 7; 1|i1, i2)−η(1, 7; 1|i1, i∗2)−η(1, 7; 1|i∗1, i2)+η(1, 7; 1|i∗1, i∗2)
(20)
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θ12(1, 7; 2|i1, i2) = η(1, 7; 2|i1, i2)−η(1, 7; 2|i1, i∗2)−η(1, 7; 2|i∗1, i2)+η(1, 7; 2|i∗1, i∗2)
(21)

for i1 = 2, 3, 4, i∗1 = 1, and i2 = 2, 3, i∗2 = 1. Such interactions are defined according
to (11).

The above constraints correspond to the independence of the response from the co-
variate Birth, given the Religion, in the table where the 7 categories of Pol are col-
lapsed into 3 categories: liberal = {EL,L, SL}, moderate = {M}, conservative
= {SC,C,EC}.

This hypothesis cannot be rejected as LRT = 17.6883, p − value = 0.4763, df =
18 (row 1 in Table 1).

We continue by considering if, given the initial selection of the conservative set
{SC,C, EC}, the successive choice among extreme, normal or slightly conservative
ideology does not depend on the covariate Birth.

Such hypothesis holds if and only if the nested continuation logits (9) associated to
the only interval I5,7 of I−

5,7 do not depend on Birth. The parameters of the factorial
expansion (10) that must be null are: the main effects θ1(5, 7; 1|i1, i∗2), θ1(5, 7; 2|i1, i∗2)
for i1 = 2, 3, 4, i∗2 = 1, which are 6 log-odds ratios of nested continuation-baseline type;
the 12 interactions θ12(5, 7; 1|i1, i2), θ12(5, 7; 2|i1, i2) for i1 = 2, 3, 4 and i2 = 2, 3
which are contrasts of nested continuation logits (9). These interactions are defined as
in equations (18, 19) and (20, 21).

The mentioned constraints are of type (13), and imply independence of Pol from
Birth, conditionally on Rel, in the table where the response assumes only categories
SC,C,EC.

Testing this hypothesis yields LRT = 25.1237, p− value = 0.1215, df = 18 (row
7 in Table 1), so that it cannot be rejected.

A similar hypothesis formulated for liberal citizens is instead rejected, LRT =
34.7838, p− value = 0.01006, df = 18 (row 4 in Table 1).

The intersection of the discussed hypotheses of rows 1 and 7 holds if and only if
the nested continuation logits associated to the intervals in I+

1,3 are not affected by the
covariate Birth. This imposes null values on the 36 interactions described above.

The constraints associated to this hypothesis are of the type (14), implying indepen-
dence of the response Pol from the covariate Birth, given the variable Rel, in the subtable
where the categories EL,L, SL are collapsed into one category.

Results in row 13 of Table 1 shows that this hypothesis is not rejected.
We have also tested the analogous hypotheses illustrated so far but with the role

of Birth and Rel inverted, and the results in Table 1 confirm that these hypotheses are
strongly rejected. It seems that the different attitudes of Catholics, Protestants and non-
religious people actually affect either the initial choice among the three ideologies (first
stage), and the intensity of the political orientation (second stage).

Finally, we further investigate whether, under the joint hypotheses of no role of Birth
in the choice at the first stage (row 1) and for the intensity of the conservative attitude
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at the second stage (row 7), there is an additive effect of both the covariates for liberal
people who indicate the strength of their political opinion. This additivity assumption
comports the nullity of further 12 parameters θ12(1, 2; 1|i1, i2) and θ12(1, 3; 1|i1, i2),
for i1 = 2, 3, 4 and i2 = 2, 3 as well as the 36 interactions set at zero for the hypotheses
of rows 1 and 7, but this additional restriction is rejected (LRT = 68.2020, df = 48,
p− value = 0.0291).

To sum up, with regard to the main question on whether Birth and Rel affect the posi-
tion and the intensity of the political opinion of the respondents, we summarize the main
findings of the analysis as follows. In particular, the opinion on teenage Birth control
does not influence the respondents when they manifest their general political position
(liberal, moderate, conservative), while the religious belief does. Nevertheless, when
the political position is declared, the intensity of the political opinion of conservative
people seems not to depend on their view about the teenage Birth control, while liberal
respondents behave differently and make their decision about the strength of their opin-
ion to vary according to the agreement on Birth. Finally, as well as the position, also the
intensity of the political orientation is related to the respondent’s religious creed.

6. Concluding remarks

Every continuation logit ηj is the logarithm of the ratio between πj and the proba-
bility

∑k
i=j+1 πi of selecting a higher category. An alternative approach uses the local

logits λj = log
πj

πj+1
, j = 1, 2, ..., J − 1, that have at the denominator only the proba-

bility of the next category. In this case, the following expression for the probabilities πj

holds

πj =
exp{−

∑j
h=1 λh}

1 +
∑k−1

i=1 exp{−
∑i

h=1 λh}
, j = 1, 2, ..., J − 1. (22)

As an alternative to (4) and coherently with the choice of the local logits, it is possible
to define the nested local logits, associated to the interval Ii,k, in the following way

λ(i, k;h) = log
P (Si,k

h )

P (Si,k
h+1)

, h = 1, 2, ..., li,k − 1.

The models discussed in Section 3 also apply to the nested local logits. It is worthwhile
noting that the normalizing factor in (22) involves all the local logits. This implies that
a probability πj is function of all the logits, so that a change in any local logit affects
the probabilities of every category. On the contrary, the denominator of (1) depends
only on the first j continuation logits. This means that a probability πj is not affected
by a change in the logits ηm, m > j. This feature, which generalizes to the multistage
case, is essential to understand why the continuation logits are coherent with a sequential
selection procedure that stops once a category is not discarded without considering the
higher categories, while the local logits do not meet the same property.
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Moreover, note that the local logits and the expression (22) capture an essential
aspect of the partial credit model by Masters (1982), where the local logits have a special
structure in terms of person and item parameters, while the continuation logits are linked
to the sequential Rash models by Tutz (1990).

Finally, as shown by Dardanoni and Forcina (1998), Cazzaro and Colombi (2006),
the choice of a logit type may also follow from a chosen monotone dependence crite-
rion. In particular, the likelihood ratio criterion is equivalent to increasing local logits
with respect to covariates, while increasing continuation logits (with respect to covari-
ates) correspond to the uniform dependence criterion. As the uniform dependence is the
weakest, continuation logits are more likely to order stochastically the response distri-
butions conditioned on the covariates.
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Summary: Particular emphasis has been put, lately, on the analysis of categorical data
and many proposals have appeared, ranging from pure methodological contributions to
more applicative ones. Among such proposals, the CUB class of distributions, a mixture
model for the analysis of ordinal data has been successfully employed in various fields,
and seems of particular interest. CUB are univariate models and do not possess, at
present, a multivariate version. In this work, moving in this direction, we investigate the
use of CUB in the framework of copula models, with respect to a Plackett copula model
specification with CUB margins and discuss its potential and limitations.

Keywords: multivariate ordinal data, CUB, copula models, plackett copula

1. Introduction

The analysis of ordinal data is nowadays a field of great interest for the vast major-
ity of applied fields and poses interesting challenges to statisticians in the development
of an adequate methodology. Diverse proposals have been introduced during the recent
years for their treatment, leading to important theoretical contributions from the scholars
worldwide. Among such proposals, the authors deem worth of particular consideration
the CUB (Piccolo, 2003) models, a class of univariate mixture distributions that has
been successfully applied in many fields such as semiotics, ability assessment, medical
research and customer satisfaction; the parsimonious parameterization and the ease of
estimation and interpretation make CUB models a very useful tool for ordinal data anal-
yses. Unfortunately, to date, a general version of CUB for multivariate data (that are
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common when analyzing, for example, survey results), is still unavailable.
Feeling that multidimensional data coming from the same source (such as responses to
a questionnaire items) should be treated as an ensemble in order to account for existing
dependence structures, we see the need for an extension of this class. We note that an in-
teresting first attempt at defining a bivariate CUB distribution using a multivariate model
with fixed margins (specifically, the Plackett distribution) is made by Corduas (2011);
we show how this proposal constitutes a special case of a more general class of models
which is embedded in the framework of copulas (see Nelsen, 2010) and discuss its prop-
erties, limitations and possibility of extension to more than two dimensions. Particular
attention is put on estimation methods and parameters interpretation, and a simulation
study is presented, in which we investigate the behaviour of this bivariate version of
CUB under many different scenarios.

2. Background

This section is intended to briefly review the general framework of both CUB and
copula models.

2.1. CUB models

The CUB is a class of mixture models, possibly involving covariates, developed as a
new approach for modeling discrete choices processes. The most common situation in
which such approach can be employed regards the analysis of questionnaire data, with
items responses evaluated on Likert scales and, thus, in the presence of ordinal data.
CUB models are characterized by two components, related to uncertainty and feeling.
The inherent uncertainty in answering an item is modeled through a discrete uniform
variable, whereas the latent process leading to the choice is governed by the subjective
feeling, and modeled using a Shifted-Binomial distribution. The probability of observing
a particular response r = 1, 2, ...,m, with m known (m > 3 to ensure identifiability), to
an item is expressed as a mixture of two such components as follows:

P (R = r) = π

(
m− 1

r − 1

)
ξm−r(1− ξ)r−1 + (1− π)

1

m
, r = 1, 2, ...,m (1)

with π ∈ (0, 1] and ξ ∈ [0, 1].
π define the mixture weights and as such is inversely related to the amount of uncertainty
in the answers (the higher π, the less the uniform component contributes to the mixture);
ξ, on the other hand, is related to personal preferences and measures the strength of
feeling or adherence, agreement with the item (the interpretation of ξ also depends on
the kind of ordering adopted for the item).
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2.2. Copula models

Following Nelsen (2010), a (two-dimensional) copula is a function C : [0, 1]2 →
[0, 1] that satisfies:

1. ∀u, v ∈ [0, 1],
C(u, 0) = 0 = C(0, v)

and
C(u, 1) = u,C(1, v) = v

2. ∀u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2, v1 ≤ v2,

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0.

The definition is easily extended to k dimensions to characterize functions C : [0, 1]k →
[0, 1] with the same properties. Copulas are, thus, k-place, grounded and k-increasing
real functions with the unit hypercube as domain. Sklar’s Theorem (Sklar,1959) is cen-
tral to the theory of copulas; for the bivariate case, it can be stated as follows.
Let H be a joint distribution function with margins (i.e. marginal distribution functions)
F and G. Then there exists a copula C such that for all x, y ∈ R = [−∞,+∞]

H(x, y) = C[F (x), G(y)] (2)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on
Ran(F ) × Ran(G). Conversely, if C is a copula and F,G are distribution functions,
then the distribution function H defined in (2) is a joint distribution function with mar-
gins F and G.

This remarkable result shows that copulas can be used to:

1. express known joint distribution functions in such a way that the dependence
structure is captured by the copula as a function of the marginal distribution func-
tions

2. link univariate distribution functions to different multivariate distribution func-
tions having different dependence structure (copulas).

Copulas are usually characterized by parameters that govern the dependence among the
margins, and different choices for the function C lead to different dependence structures.
The use of copula models in this work relates to point 2, i.e. we use C as building tools
to form a multivariate distribution, given the marginal distributions.

Particular care is needed when working with non-continuous margins, as in the
case of the CUB models, due to the non-uniqueness of the copula representation; non-
uniqueness stems from the fact that marginal distribution functions are not strictly mono-
tonically increasing, rather monotonically non-decreasing, and do not possess an inverse
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in the usual sense, rather a pseudo-inverse (see, for example, Nelsen, 2010). The most
severe consequence of this is that distribution functions built with copulas might not
inherit interesting properties of C. Specifically, the copula parameterization cannot,
alone, define the dependence structure (as in the continuous case): dependence-related
measures become, in this case, margin-dependent (Genest et al., 2007). Nonetheless,
copulas still are an easy-to-implement and interesting tool to build multivariate models,
and under certain circumstances it is still possible to make assessments about depen-
dence among margins. For example, some copula families possess the property of being
ordered by Positive Quadrant Dependence (PQD, see Joe, 1997) and it is possible to
show that this minimal requirements for copula parameters to be interpretable as depen-
dence measures is granted even in the non-continuous case (Genest et al., 2007). The
Plackett copula, as will be discussed in 3.2, does possess such ordering.

A concept that has been given much attention in the field of copulas, thanks to its
practical implications (especially in the financial field), is tail dependence. General de-
pendence indices (e.g. Spearman’s ρ and Kendall’s τ ) provide a measure of the overall
strength of the association, but can’t give any insight about how this varies across the
distribution (Venter, 2003, Nelsen, 2010); it might be of interest to focus the attention
on events on the tails of a distribution, and the aforementioned measures fail to provide
insight on such aspects. Focusing on the bivariate case, lower and upper tail dependence
coefficients are defined (see, e.g., Nelsen, 2010) in terms of a copula C and for continu-
ous margins, and usually labelled λL and λU , respectively. We say that a copula has no
lower (upper) tail dependence if λL = 0 (λU = 0). Intuitively, tail dependence coeffi-
cients measures the dependence between the variables in the lower-left and upper-right
quadrants of the unit square; geometrically, they measure the departure of the slope of
C from the slope of the copula that assumes independence between the margins, the so
called independence copula Π(u, v) = uv, in the corners of the unit square.
Genest et al. (2007) show that, at least when the margins have the same distribution, a
copula based model retain the tail dependence properties of the copula C used to con-
struct it even in the presence of non-continuous variables. We will discuss this point in
Section 3.2, when referring to the Plackett copula with CUB margins.

2.3. Estimation methods for copula parameters

Let Cθ be a copula with parameter θ ∈ Θ and margins X ∼ Fα(x), Y ∼ Gβ(y)
parameterized by α ∈ A and β ∈ B, respectively; all parameters may be vectorial. Let
cθ, fα, gβ be, respectively, the copula density and the margins densities (with respect
to an appropriate measure), and let γ = (α, β, θ)′ ∈ Γ be the vector collecting all the
model parameters. Estimation can be performed either by Joint Maximum Likelihood
(JML), i.e.

γ̂ = argmax
γ∈Γ

ln cθ
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or following the Inference From Margins (IFM, Joe et al., 1996) scheme, which requires
to estimate the marginal parameters separately first, to plug them into the copula density,
and then to maximise with respect to the copula parameter, i.e.

α̂IFM = argmax
α∈A

ln fα

β̂IFM = argmax
β∈B

ln gβ

and then
θ̂IFM = argmax

θ∈Θ
ln cθ(α̂

IFM , β̂IFM )

thus yielding
γ̂IFM = (α̂IFM , β̂IFM , θ̂IFM )′.

IFM estimation is much more computationally efficient than joint ML and grants nu-
merical stability even with small sample sizes. Moreover, Joe et al. (1996) have proven
that, under regularity conditions, the IFM estimator is consistent and asymptotically
normal. An important remark has to be done, however, with respect to the parameters
variance/covariance matrix: whereas it is possible to obtain an estimate of it directly
from the Hessian matrix when working with JML estimation, the theory of Generalised
Estimating Equations underlying IFM requires to evaluate the Godambe Information
matrix, which can be quite difficult to compute. Joe et al. (1996) show how the jack-
knife method can be used to obtain standard error estimates in an easier way.

Rank-based inversion methods, very useful and common in the copulas practice,
should not, as strongly pointed out in Genest et al. (2007) be used when dealing with
non-continuous margins because of bias-related issues. Bayesian estimation by means of
Monte Carlo Markov Chain (MCMC) algorithms is also possible, but is not considered
in this work.

3. Multivariate approach to CUB models

As said, CUB models have been developed to describe univariate discrete phenom-
ena, e.g. the distribution of answers to a single questionnare item. Since questionnaires
are usually composed by many different questions (say k), a complete analysis with
CUB would require to separately estimate the k couples (πi, ξi), i = 1, ..., k, that char-
acterize each item. This disjoint analysis approach does not take into account the depen-
dence (possibly) existing among items, which could be exploited to better catch further
information about the phenomenon and enrich its understanding. Drawing on this, we
intend to evaluate the feasibility of a multivariate approach to CUB modeling, through
the use of copula models.
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3.1. The CO-CUB model

We define a multidimensional extension of CUB, called CO-CUB model, as a mul-
tivariate copula with discrete margins, each following a CUB distribution.

Definition A k-dimensional (k ≥ 2) CO-CUB model with copula C is a multivari-
ate discrete variable with margins Ri ∼ CUB(πi, ξi), i = 1, ..., k, each with support
{1, ...,mi}, mi > 3, and joint distribution function given by:

Ψ(r1, ..., r;π, ξ, θ) = P (R1 ≤ r1, ..., Rk ≤ rk;π, ξ, θ) = (3)
= Cθ[F1(r1;π1, ξ1), ..., Fk(rk;πk, ξk)]

where π = (π1, ..., πk)
′, ξ = (ξ1, ..., ξk)

′ and for a particular choice of copula C, char-
acterized by a parameter θ = (θ1, ..., θd)

′ taking values in some real d-dimensional
space Θ defining the dependence structure of its components. Fi(ri) = Fi(ri;πi, ξi)
stands for the distribution function of the i-th margin, i.e. Fi(ri) = P (Ri ≤ ri), and the
support of the CO-CUB variable is the grid {1, ...,m1} × ...× {1, ...,mk}.

The whole parameter set for a k-dimensional CO-CUB is, then, the ordered triplet
(π, ξ, θ) ∈ (0, 1]k × [0, 1]k × Θ, having the following interpretation: by definition of
copula, being margins of (3) CUB, parameters (π, ξ) retain the same interpretation as in
the unidimensional case, while for what concerns the copula parameter θ, its interpreta-
tion as a dependence measure is connected with the specific copula C adopted, and will
be further discussed later.

3.2. Possible choices for C: the Plackett copula

In this work we adopted, for the reasons discussed in Section 1, the Plackett copula
in the bivariate case. The Plackett copula family is defined, for k = 2, as:

Cθ(u, v) =

{
Aθ(u,v)−

√
A2

θ(u,v)−4θuv(θ−1)

2(θ−1) θ ∈ (0,+∞) \ {1}
uv θ = 1

where (u, v) ∈ [0, 1]2, Aθ(u, v) = 1 + (θ − 1)(u + v) and θ > 0 is a dependence
parameter. Specifically, this multivariate model is able to describe different dependence
structures between the margins u, v for different values of θ:

{ θ ∈ (0, 1) negative dependence
θ = 1 independence
θ ∈ (1,+∞) positive dependence.

This copula is comprehensive (Nelsen, 2010), meaning that it can attain the Fréchet-
Hoeffding lower and upper bounds (as θ → 0+ and θ → ∞, respectively) as well as
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the independence copula (for θ = 1). This is a desirable property in that, at least when
dealing with continuous margins, this model can cover a very wide range of dependence
structures, ranging from countermonotonicity (lower bound) to comonotonicity (upper
bound). It is interesting to note that there is a functional relationship between the Plack-
ett copula parameter θ and Spearman’s ρ when the margins are continuous and θ �= 1:

ρ(θ) =
θ + 1

θ − 1
− 2θ

(θ − 1)2
ln θ. (4)

It is easy to verify that limθ→0+ ρθ = −1, limθ→1 ρθ = 0 and limθ→+∞ ρθ = 1. More-
over, ρθ is a strictly increasing function of θ, which makes the Plackett family positively
ordered by its parameter, meaning that Cθ ≥ Cθ′ ⇐⇒ θ ≥ θ′; this is an important fea-
ture since it constitutes a minimal requirement to be able to interpret θ as a dependence
parameter (Joe, 1997). There seems to be no closed form expression for Kendall’s τ for
members of the Plackett family.

When dealing with discrete margins, however, relationships such as the one in Equa-
tion 4 become more involved. The range of values for usual dependence measures (e.g.,
Pearson’s ρ) is usually narrower in the discrete case than it is in the continuous case
(see, e.g., Ferrari and Barbiero, 2012); if we consider Equation 4, we could then expect
(also from a merely analytical point of view) a reduction of the range of θ’s admissible
values and, hence, of the copula’s spannable range of dependence. In reality, it can be
shown (Genest et al., 2007) that every measure of dependence among discrete margins
computed on the basis of a copula C is dependent not only on the copula parameter θ,
but also on the particular margins themselves: this means its expression could be more
complex than Equation 4, involving, for example, also the parameters of the marginal
distributions. In light of these considerations, and in the hope of retaining some flexi-
bility in modeling, the choice of a copula that can, at least in principle, span the whole
range of dependence (that is, a comprehensive copula), seems to be a good starting point.

The Plackett copula exhibits no tail dependence, i.e. λL = λU = 0. This might be
a limitation thinking, e.g., of assessment questionnaires, in which dependence among
items is expected to behave differently along the Likert measurement scale. For exam-
ple, respondents that indicate a high level for an item, might be more likely to do the
same for a closely related item, or vice-versa. The Plackett copula cannot take into ac-
count such feature. This copula, moreover, satisfies the conditions for radial symmetry
(Joe, 1997), but whether this property is preserved even in the presence of CUB margins
is still under study.

A more general k-dimensional version of the Plackett copula can be derived (see
Molenberghs, 1992 and Tibaldi et al., 2004) but appears quite complex. We reckon that
alternative interesting tools to go beyond the two dimensions, while still retaining this
copula good properties and allowing, moreover, for more flexibility can be Pair Copula
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Construction and Vines (not discussed here).

3.3. The CO-CUB model with Plackett copula - without covariates

Focusing on the bivariate case, the CO-CUB model with Plackett copula is then:

Cθ(uπ1,ξ1 , vπ2,ξ2) =
Aθ(uπ1,ξ1 , vπ2,ξ2)−

√
A2

θ(uπ1,ξ1 , vπ2,ξ2)− 4θuπ1,ξ1vπ2,ξ2(θ − 1)

2(θ − 1)

for θ ∈ (0, 1) ∪ (1,+∞), and

C1(uπ1,ξ1 , vπ2,ξ2) = uπ1,ξ1vπ2,ξ2 .

Here we have that

uπ1,ξ1 = F1(r1) =

r1∑
i=1

[
π1

(
m1 − 1

i− 1

)
ξm1−i(1− ξ1)

i−1 + (1− π1)
1

m1

]

where m1 is the (fixed) number of categories of the first CUB model; similarly for vπ2,ξ2

and we will from now on assume m1 = m2 = m > 3. The copula probability mass
function can be obtained as:

cθ(r1, r2) = Cθ(b1, b2)− Cθ(a1, b2)− Cθ(b1, a2) + Cθ(a1, a2)

where ai = Fi(ri), bi = Fi(ri − 1), i = 1, 2.

The model parameters are then π1, ξ1, π2, ξ2 and θ. Estimation can be performed
either by JML or IFM. Bayesian techniques have also been considered: drawing on an
existing work on MCMC estimation for univariate CUB models (Deldossi et al., 2013),
a routine in JAGS language has been written that can handle CO-CUB model parameters
estimation.

3.4. The CO-CUB model with Plackett copula - with covariates

One of the most appealing features of CUB models is that they allow for a straight-
forward inclusion of covariates; the same can apply to the CO-CUB model, with a few
remarks. Given a set of covariates X, it is necessary to decide how to let them enter the
model. Three possibilities exist:

1. covariates enter the model at the marginal level only, i.e. each margin is a CUB(p, q),
as defined in Iannario (2008)

2. covariates enter the model at the dependence level only, i.e. θ = f(X), for a
suitable link function f
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3. covariates enter the model at both the marginal level and at the dependence level.

Method 1 would allow to describe different uncertainty and feeling patterns based
on levels of X, but this differences wouldn’t be reflected by the dependence parameter,
which would be a single value θ. For example, it would be possible to describe for each
item whether males (M) tend to answer with higher (or lower) feeling and uncertainty
as compared to females (F), but items dependence would be assumed to be independent
of sex. In terms of model parameters, θM = θF , while (πi,M , ξi,M ) and (πi,F , ξi,F )
are allowed to be different; this might not be a realistic assumption. It could be more
adequate, in this case, to decide to employ the copula to model marginal residuals, rather
then the CUB(p, q) directly. A similar approach has been applied in a different context,
see Disegna et al. (2013).

Method 2 would allow to describe different dependence patterns based on covariates,
assuming implicitely that they do not affect the marginal distributions. For example, it
would be possible to describe the effect of gender on how the responses to two items
are related, but not how it affects the answers themselves. In terms of CO-CUB param-
eters, this would imply that θM might be different from θF , while πi,M = πi,F and
ξi,M = ξi,F , i = 1, 2. This might not be a realistic assumption and, moreover, in the
modeling setting we are proposing relevant information might be neglected by ignoring
the (possible) impact of covariates on the marginal behaviour.

Finally, method 3, being a combination of 1 and 2, would allow to describe both dif-
ferent dependence patterns and marginal behaviours, based on X. This approach, known
as conditional copula, has been widely applied (see, e.g., Patton, 2006 and Acar et al.,
2011), especially in the financial context. The definition of a suitable link function to be
able to describe θ as a function of the covariates without altering its range is required,
and the margins can be modeled as CUB(p, q) distributions.

Again, both JML and IFM, as well as MCMC techniques, can be considered for
estimation of the model parameters.
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4. Simulation study

Due to the difficulty to obtain analytical results with regards to the CO-CUB model,
a simulation study is conducted in the bivariate case and in the absence of covariates,
aimed at investigating the following points:

1. consistency of CO-CUB results with those obtained from univariate CUB models

2. behaviour of the copula parameter θ with respect to the strenght of dependence
between items

3. behaviour of the copula parameter θ with respect to the marginal parameters

4. goodness of fit of the CO-CUB model.

Specifically, we are interested in points 2-4, because they are directly connected to the
characteristics of the bivariate (multivariate) version of CUB models we are studying.
All computations have been carried out using R 3.0.2 (R Core Team, 2013).

4.1. Simulation design

A number of combinations of marginal parameters levels and strength of dependence
between items have been investigated, for total of 27 scenarios. Two data generating
mechanisms are considered: GenOrd (Barbiero et al., 2012, implemented in the pack-
age GenOrd, function textitordsample) and Iman-Conover method (Iman et al., 1982,
implemented in the package mc2d, function cornode)

• GenOrd: generates from every possible distribution with fixed cdf and given Pear-
son’s ρ or Spearman’s ρ, by means of a Normal copula

• Iman-Conover: generates from given CUB margins and Spearman’s ρ, but is joint
distribution free.

2000 runs with 1000 observations are generated with both methods for different sce-
narios; each scenario is characterized by the parameters vector γ = (π1, π2, ξ1, ξ2, ρ)

′,
each component of which takes values in {0.25, 0.50, 0.75}, where ρ is Spearman’s cor-
relation coefficient and π1 = π2, ξ1 = ξ2,m1 = m2 = 7 (this means that the marginal
distributions we consider are identical).

No sensible differences between GenOrd and Iman-Conover in terms of results per-
taining the four main targets of the simulation study have been observed, so we decide
to discuss only those obtained with the Iman-Conover generating mechanism.

Both JML and IFM have been considered; the following table summarizes some
considerations about the two estimation methods:
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JML

• works fine with Plackett copula over
all the investigated parameter space

• no effect of ρ detected on the joint
distributions of (π̂i, ξ̂i), i = 1, 2 and
(π̂1, π̂2), (ξ̂1, ξ̂2)

• computationally demanding and
weak in the nearings of parameter
space boundaries

• γ̂ variance/covariance matrix obtain-
able by inversion of the Hessian ma-
trix

• ML theory for distribution of γ̂

IFM

• works fine with many copulas over all
the investigated parameter space

• no effect of ρ detected on the joint
distributions of (π̂IFM

i , ξ̂IFM
i ), i=1,2,

and (π̂IFM
1 , π̂IFM

2 ), (ξ̂IFM
1 , ξ̂IFM

2 )

• computationally efficient and some-
what numerically robust in the near-
ings of parameter space boundaries

• γ̂IFM variance/covariance matrix ob-
tainable from Godambe information
matrix → jackknife method advocated

• IFM theory for asymptotic distribution
of γ̂IFM , it’s CAN

We present only the results obtained via IFM estimation: theoretical results and ex-
ploratory analyses, together with a sufficiently large sample size endorse the equivalence
of the two methods, and the computational efficiency gain is really impressive (the time
for the simulation is reduced by a factor of about 20).

The model fit is then assessed, following Corduas (2011), by means of the normal-
ized dissimilarity index ∆:

∆ =
1

2

m∑
i=1

m∑
j=1

|ĉθ −
nij

n
| (5)

where nij is the observed frequency of the couple (i, j) and n the the total sample size.

4.2. Simulation results

We discuss the results regarding points 1-4 in the following plots that provide inter-
esting insights into the properties of the CO-CUB model with Plackett copula.

Figure 1 shows the scatter plots of marginal CUB parameters estimates for one of the
two generated margins along all the combinations of true parameters considered. The
estimates distribution confirms itself unbiased for (π, ξ), exhibits correlation decreas-
ing with π and incorrelation for ξ = 0.5 (graphically represented by segments of local
regression lines of ξ on π). Given the estimation method (IFM) this results were, of
course, expected on the basis of the theory for univariate CUB models; it is still interest-
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Figure 1. CUB estimates scatter plot

ing, nonetheless, to observe the correlation pattern between π and ξ, strongly dependent
on the levels of both uncertainty and feeling.

Figure 2 highlights the relationships existing between θ and ρ and θ and the marginal
parameters. The Plackett copula parameter θ appears to be in a monotonically increasing
relationship with ρ, that is supported by the theory: Plackett copula family is ordered
by PQD, thus higher values of θ correspond to higher levels of dependence. The re-
lationship appears clearly non-linear, involving also θ variability, which seems to be
increasing with correlation (note that θ is not a relative measure).
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Figure 2. θ-plot: ρ = 0.25 (solid line), ρ = 0.50 (dashed), ρ = 0.75 (dotted)

As for what concerns the behaviour of the copula parameer as related to π and ξ, θ
appears to be affected by marginal parameters values, even if slightly. It would seem
that θ tends to increase in both location and variability monotonically with π, whereas
the effect of ξ seems negligible. Derivation of a closed form relationship linking θ, ρ
and the marginal parameters appears difficult.

Figure 3 summarizes the goodness of fit in terms of ∆ (equation 5) of the CO-CUB
with Plackett copula as compared to the independence assumption (copula Π).
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Figure 3. ∆-plot: Plackett copula cθ vs Independence copula Π, π = ξ = 0.5

Inspection of the above plot shows how the fit is quite similar for ρ = 0.25 (low
correlation). As correlation increases, though, the Plackett copula maintains a low (al-
beit slightly increasing) ∆, while Π yields an increasingly larger dissimilarity, reaching
values as high as three times the ∆ of the Plackett Copula when ρ = 0.75. ∆-plots for
all the combinations of levels of true parameters are collected in Figure 4, showing the
advantage of employing the copula model and its additional parameter θ in terms of fit
when dependence exist, regardless of the specific value of (π, ξ).
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Figure 4. ∆-plot: Plackett copula cθ vs Independence copula Π

Figure 5 depicts some examples CO-CUB models with Plackett copula varying de-
pendence strength and marginal parameters. R1 and R2 axes show the ranks of the
univariate margins, whereas the vertical axis shows the corresponding values of the CO-
CUB density function; overimposed, on the margins, the univariate CUB distributions.
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Figure 5. Plots of Plackett CO-CUB densities for some combinations of (π, ξ) and ρ

5. Conclusive remarks

In this work we investigate the properties of a copula model with CUB margins. A
flexible k-dimensional approach to analyze ordinal data, the CO-CUB model, is dis-
cussed and advantages and limitations of the choice of a Plackett copula as its core
structure are investigated with respect to the two-dimensional case; the possibility of in-
cluding covariates in the CO-CUB is presented, showing how such extension is straight-
forward, yet requires a careful evaluation of the modeling assumptions. Attention is
focused on the Plackett family because of preliminary studies on various copula choices
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(Andreis et al., 2013) that appointed it as a good candidate thanks to its nice properties,
and drawing on a first interesting work on the topic by Corduas (2011). Our main con-
tribution is to contextualize the proposal of a bivariate Plackett distribution with CUB
margins within the framework of copula theory, thus providing an alternative point of
view that leads to a greater insight on this topic, also through a simulation study, and to
lay the foundation for extension to higher multidimensional modeling using CUB vari-
ables.
The simulation study shows the consistency of the CO-CUB model with Plackett copula
with respect to the univariate CUB and highlights the relationships linking the copula
parameter θ to the strength of dependence between the margins and to the marginal pa-
rameters. The model’s goodness of fit is compared to that of the naı̈f assumption of
independence (Π copula), showing the advantage of including an additional parameter
(θ). Copulas are a well known and widely used tool with a strong theoretical background
when dealing with continuous margins, while their application in the presence of non-
continuous variables is at present a very new and promising field. The discrete nature
of the CUB variable we consider gives rise to some issues related, in particular, to the
interpretation of the copula parameter θ. The simulation study reveals the dependence
of θ on the marginal parameters, which should be subject to further investigation. On the
basis of the results of the simulation study and of theoretical considerations, the Plackett
copula would seem, overall, a good choice for modeling multivariate data with CUB
margins. There is, nonetheless, a relevant limitation: when dealing with assessment data
(e.g. responses to a questionnaire), heavy-tailed distributions are very likely to arise,
and the absence of tail dependence in this copula (λL = λU = 0) prevents a proper
modeling of such situations.

Further research on the topic should address a deeper understanding of the relation-
ships between θ and marginal CUB parameters, as well as their interpretation. Modeling
more than 2 dimensions in a flexible and informative way, possibly investigating the use
of Pair Copula Construction and Vines, is also an important open question. Estimation
methods such as MCMC algorithms can be considered as an alternative to JML and IFM
and thus investigated, as well as selection among competing models.
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Summary: We propose a model for longitudinal data with a suitable parameterization
based on global logits to account for the ordinal response variable which incorporates
observed covariates and time-varying latent unit specific effects. As an example we
consider a derived ordinal variable by using the total revenues and discharges of the
hospitals. For example, the hospital can vary on the response variable because of the
unobserved covariates such as general manager ability (unobserved heterogeneity). The
distribution of the latter may be discrete-valued or continuous-valued. In the first case it
is based on a first order homogeneous Markov chain with a fixed number of states. In the
second case it is a mixture of auto-regressive AR(1) processes with specific mean values
and correlation coefficients and common variances. Maximum likelihood estimation of
the model parameters is performed by using the Expectation-Maximization algorithm
and the Newton-Raphson algorithm. Standard errors are obtained by using the observed
information matrix. The results of the application to data referred to some hospitals in
Lombardy are illustrated.

Keywords: Diagnosis-related groups, Latent Markov model, Mixture latent auto-regressive 
model, Unobserved heterogeneity, Panel data, Path prediction

1. Introduction

In the analysis of longitudinal data, the interest is often focused on the evolution
of a latent characteristic related to the units under investigation over time, which may
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be measured by one or more occasion specific ordinal response variables. The model
proposed by Bartolucci, Bacci and Pennoni (2014) may be seen a promising tool to be
used in many practical applications. In fact, with its flexible structure it can be applied
when the ordinal response variable has a limited number of categories and both when
few or many time occasions are available. The proposed model is based on two differ-
ent formulations of the distribution of the latent process in order to properly model the
unobserved heterogeneity. When the model is formulated according to a discrete dis-
tributive assumption on the unobserved heterogeneity a latent Markov model results (for
a review see Bartolucci, Farcomeni, Pennoni, 2013). When it is formulated according to
continuous distributive assumption on the unobserved heterogeneity a mixture of auto-
regressive processes results. The adopted parameterization accounts for a model which
is parsimonious, easy to interpret and with hypotheses which may be interesting to test.

In this paper we illustrate the model formulation by focusing on a derived ordinal
variable which can be considered as a measure of the efficiency of the hospital spend-
ing policy which is observed at four occasions. The application we propose concerns
some hospitals in Lombardy to examine if they have efficiency gains during the period
2008-2011. In such a context the latent variables have the role to account for hospital
unobserved heterogeneity by introducing a unit specific random intercept. This aspect is
in connection with the inclusion of observed covariates which may also be time-varying
and do not fully explain the heterogeneity between the level of efficiency gained by
different hospitals. Considering the proposed application the observed covariates are
measured each year and they are related with the hospital characteristics.

The paper focus on a suitable parameterization for the measurement model according
to the statistical literature on the ordinal response variables (see among others Colombi
and Forcina, 2001) and which makes the latent components of the model interpretable.
We admit that the effect of the unobserved covariates has its own dynamics. In the
context of study this is important for example to account for those factors such as the
general manager ability which affect the budgetary of the hospital. In the applied case of
study, the hospital general manager is indeed lawfully responsible for all the activities
performed in her/his hospital. In such a context, experience, ability and skills which
may increase over time are important features to be considered.

Among many models developed to address the related aspect of technical efficiency
we mention the stochastic frontier model proposed by Aigner, Lovell and Schmidt
(1977) which has been extended in several directions (see among others Green, 2005).
The model proposed by Battese and Coeli (1995) has the advantage to allow for time-
varying efficiency components. Recent reviews of such models may be found in Green
(2009) and Kumbhakar, Lien, Brian (2014). The main goal of the stochastic frontier
models is that to evaluate the performance of the hospitals considered as firms in terms
of technical or cost inefficiency which is considered as a failure to attain the production
frontier. The models are estimated econometrically by attaining for a random noise and
a technical inefficiency component which is assumed as a non-negative random vari-
able with a half-normal, exponential, truncated normal or gamma distribution. In such a
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context Colombi et al. (2014) suggest the use of a four random components stochastic
frontier model to allow for inefficiencies of different nature.

The paper is organized as follows. In the next section, we introduce the data used to
illustrate the proposed model and we outline the main research questions. In Section 3
we introduce the notation and the proposed longitudinal model for the ordinal response
with the two types of formulation for the latent component. In Section 4 we focus on
some details related to the log-likelihood and its maximization procedure first for the
latent Markov formulation and then for the mixed latent auto-regressive formulation. In
Section 5 we show the results of the application based on data of the ward of general
medicine and in the last section we outline some conclusions.

2. The data

The data derive from a large administrative database provided by the health care
department of Lombardy region regarding hospital’s features. It is worth mentioning
that among the Italian regions, Lombardy is the most populated one with the highest
GDP per capita among the European countries. The data cover the full population of
patients for the general medicine ward which is the one with the highest discharges and
number of beds compared to the other wards in the region. They are related to 120
hospitals and cover the years 2008, 2009, 2010 and 2011.

The variables of interest are the yearly revenues from discharges and the number
of outpatient discharges in the ward. It is important to mention that a feature of the
healthcare system is the recent introduction of a new perspective hospital reimburse-
ment regulating the hospital compensations for the different treatments provided. It is
based on the diagnosis-related group tariff which accounts for the treatment’s complex-
ity. According to this system hospitals receive a fixed rate for each admission depending
on a patient’s diagnosis. Even if this system provides a more efficient way to adminis-
trate the hospital it also may contribute to develop some opportunistic behaviours known
in the literature as upcoding, cream skimming and readmissions. The latter includes the
monetary incentives coming from admitting patients. For a more detailed description on
these features see among others Berta et al. (2010) and Herwartz and Strumann (2014).
As a consequence, hospitals face an increased pressure on their financial performance
and a risk of insolvency.

The yearly revenues are related also to the diagnosis-related group tariff which ac-
counts for the treatment’s complexity and therefore they account for the severity of
health care procedure provided to the patient. In the proposed application we suggest
to consider the ratio between the yearly revenues and the yearly number of discharges.
It accounts for the more complex case mix of the patients and it can be interpreted as
an efficiency monetary measure of the hospital and named pre capita revenue. For ev-
ery hospital the following time-varying covariates are also available: the total number
of beds, the yearly hours of activity of physicians, nurses and other employees of the
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hospital and the hours of activity of the surgery rooms. Table 1 shows some descriptive
statistics of the pre capita revenue and of the available time-varying covariates over the
time occasions. It is important to mention that of 120 hospitals two of them have been
deleted from the analysis due to the fact that they showed a very high or very low value
of the pre capita revenue compared to the other hospitals. Then, we consider as response
variable for each year that based on four ordered categories corresponding to the four
quarters of its distribution. The response variable is then measured on a scale based on
four ordered categories: ‘low’, ‘medium’, ‘high’ and ‘very high’.

Table 2 shows the empirical transition matrix of the response variable. Each row of
this matrix shows the percentage frequencies of the four response categories at occasion
t given the response at occasion t− 1, with t = 2, . . . , T . The transition matrix shows a
high degree of persistence on the same category of efficiency level since many hospitals
at time t are in the same efficiency category in which they are at time t − 1 and the
percentages included between 20% and 31% lie in an adjacent category.

Table 1. Distribution of variables over the time occasions.

Year
V ariable 2008 2009 2010 2011
pre capita revenue 2813.86 2886.57 3011.58 3074.65
beds (number) 45.51 45.39 44.78 44.10
physicans (hours) 245,597.44 247,104.11 214,122.28 206,485.25
nurses (hours) 481,504.42 485,475.39 398,980.55 345,871.21
others (hours) 460,843.22 459,612.36 309,272.25 156,393.88
surgey rooms (hours) 7,691.40 7,675.94 8,144.78 7,940.05

Table 2. Conditional empirical distribution of the response variable at time t given the
response at time t− 1, with t = 2, . . . , T (percentage frequencies).

Ratio at t
Ratio at t− 1 low medium high very high Total
low 76.7 20.0 3.3 0.0 100.0
medium 20.7 48.3 24.1 6.9 100.0
high 3.4 31.0 44.8 20.7 100.0
very high 0.0 0.0 26.7 73.3 100.0



Two competing models for ordinal longitudinal data... 57Two competing models for ordinal longitudinal data... 5

3. The proposed model

With reference to a sample of n hospitals observed at T time occasions, let yit be the
ordinal response variable for hospital i at occasion t with a number of categories denoted
by J , and let xit be a corresponding column vector of covariates, with i = 1, . . . , n and
t = 1, . . . , T . We also denote by yi = (yi1, . . . , yiT ) the vector of response variables
and by Xi = (xi1 · · ·xiT ) the matrix of time-varying and time-constant covariates for
hospital i.

The model we formulate is based on the assumption that yit = G(y∗it), where y∗it
follows the model

y∗it = αit + x′
itβ + ηit, i = 1, . . . , n, t = 1, . . . , T,

with ηit being independent error terms with a standard logistic distribution, and G(·) is
a link function which models the relationship between each response variable yit and
the corresponding latent variable αit and the vector of covariates xit. In such a case it
is a function of cut-points µ1 ≥ · · · ≥ µJ−1 and it can be formulated as

G(y∗) =




1 y∗ ≤ −µ1,
2 −µ1 < y∗ ≤ −µ2,
...

...
J y∗ > −µJ−1.

The basic assumptions of the model are that for every sample unit i, y∗it, . . . , y
∗
iT are con-

ditionally independent given (αi1, . . . , αiT ) and Xi, and that due to the ordinal nature
of the response variable we have

log
p(yit ≥ j|αit,xit)

p(yit < j|αit,xit)
= µj + αit + x′

itβ, (1)

with i = 1, . . . , n, t = 1, . . . , T, j = 2, . . . , J . The parameterization adopted which
is based on global logits for the distribution of each response variable is particularly
suitable as we deal with an underling continuous outcome which is suitable discretized
(McCullagh, 1980). For parsimony and easiness of interpretation we are assuming that
the effect of covariates and of the unobserved individual parameters do not depend on
the specific response category. This parametrization is based on one parameter for each
latent state, which is an aggregation of hospitals sharing the same propensity towards
efficiency gains and one cut-point for each response category. Then, the latent states
may be ordered according to the highest and lowest level of efficiency. Also note that
the cut-points are common to all the response variables, since these variables correspond
to repeated measurements of the same phenomenon.

The distribution of the latent variable may be based on a discrete or on a continuous
latent process. The discrete latent process formulation is more natural in some con-
texts and it typically assumes that, for all i, αi = (αi1, . . . , αiT ) follows a first-order
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homogenous Markov chain with k states denoted by ξ1, . . . , ξk. This chain has initial
probabilities πh and transition probabilities πh1h2 , with

πh = p(αi1 = ξh), h = 1, . . . , k,

πh1h2 = p(αi,t−1 = ξh1 , αit = ξh2), h1, h2 = 1, . . . , k, t = 2, . . . , T.

It is assumed that every αit is conditionally independent of αi1, . . . , αi,t−2 given αi,t−1,
but apart from this assumption, the distribution of αi is unconstrained except that to en-
sure identifiability we require that

∑
h πh = 1 and

∑
h2πh1h2

= 1 and one component
of the support point is constrained to be zero.

In such case a latent Markov (LM) model (Wiggins, 1973) with covariates results
where the covariates affect the measurement model; see Bartolucci, Farcomeni and
Pennoni (2013) for a review. The continuous latent process formulation as proposed
by Bartolucci, Bacci and Pennoni (2014) assumes that the hidden response variables
in y∗i1, . . . , y

∗
iT are conditionally independent given Xi and the latent process αi =

(αit, . . . , αit). Another hypothesis is that every hidden variable and then every response
variable, only depends on αit and xit and that the latent process αi has distribution
given by a mixture of k AR(1) processes with common variance σ2. According to the
latter we assume the existence of a discrete latent variable ui, for i = 1, . . . , n, having
a distribution with k support points and mass probabilities π1, . . . , πk such that when
ui = h we assume that

αi1 = ξh + ηi1, i = 1, . . . , n,

and that

αit = ξh + (αi,t−1 − ξh)ρh + ηit

√
1− ρ2h, i = 1, . . . , n, t = 2, . . . , T,

where ηit ∼ N(0, σ2) for all i and t and (ξh, ρh) are parameters which for h = 1, . . . , k
are estimated jointly with the common variance. To ensure identifiability of the model,
we require that ξ1 = 0 or,

∑
h ξhπh = 0. We observe that when h = 1, the model is

the latent auto-regressive model proposed by Chi and Reinsel (1989) and Heiss (2008),
when h > 1 it is the mixture latent auto-regressive model proposed by Bartolucci, Bacci
and Pennoni (2014). In Table 3 we provide a summary of the parameters of the two
proposed formulations.

4. Estimation details

In the following we briefly illustrate the estimation methods we employed for the
two different model formulations. Given a sample of n independent units, the model
log-likelihood is

�(θ) =

n∑
i=1

log p(yi|Xi)
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Table 3. Description of the model parameters when the distribution of the latent process
is discrete (top panel) or continuos (bottom panel).

Parameter Description Range
µj Cut-point j = 2, . . . , J
βl Regression coefficient in the model (1) l = 2, . . . , L
πh Initial probability for state h h = 1, . . . , k

πh1h2 Transition probability from state h1 to state h2 h1, h2 = 1, . . . , k
µj Cut-point j = 2, . . . , J
βl Regression coefficient in the model (1) l = 2, . . . , L
ρh Correlation coefficient of the mixture component h = 1, . . . , k
ξh Parameter for the latent structure h = 1, . . . , k
σ2 Common variance of the mixture components

where θ is the vector of all free parameters affecting p(yi|Xi). The latter is the man-
ifest distribution of the response vector yi given all the observable covariates Xi. The
model estimation is performed by the Expectation-Maximisation (EM) algorithm which
is based on the complete data log-likelihood. When we are assuming the discrete latent
formulation the complete data log-likelihood has expression

�∗(θ) =

n∑
i=1

{ T∑
t=1

q∑
h=1

J−1∑
y=0

a
(t)
ihxy log p(yit|h,xit) +

k∑
h=1

b
(1)
ih πih,

+
T∑

t=2

k∑
h1=1

k∑
h2=1

b
(t)
ih1h2

πih1h2

}
,

where b
(1)
ih is a dummy variable for unit i in component h at occasion t, with reference

to the same occasion and the same unit, b(t)ih1h2
is a dummy variable equal to 1 if this unit

moves from state h1 to state h2, whereas a(t)ihxy is equal to 1 if the unit is in state h and
provide response y and covariate configuration x. The conditional response probabilities
p(yit|h,xit) are computed efficiently by using some recursions known in this literature.
For more details see Ch. 3 and Ch. 5 of Bartolucci, Farcomeni, Pennoni (2013).

Whereas when we are assuming the continuous latent formulation the manifest dis-
tribution of the response vector yi given all the observable covariates Xi is expressed
through a T -dimensional integral which is approximately computed by a quadrature
method based on a series of q nodes properly chosen. The expression for p(yi|Xi)
based on the quadrature is an approximation which depends on the number of integra-
tion points used. It is important to mention that it has the same expression of the manifest
distribution of a latent Markov model based on q states. The nodes are taken on an eq-
uispaced grid of points, to which we refer to as vm, m = 1, . . . , q in the following. On
the basis of this choice the complete data log-likelihood may be expressed as
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�∗(θ) =

n∑
i=1

k∑
h=1

wih

{ q∑
m=1

T∑
t=1

zimt log p(yit|νm,xit) + log πh,

+

q∑
m1=1

q∑
m2=1

T∑
t=2

z∗im1m2t logω
(h)
m1m2

}
,

where wih = I{ui = h} is a dummy variable for unit i in component h, zimt = I{αit =
vm} is a dummy variable for unit i given the mth quadrature point for the integral with
respect to αij , z∗im1m2t

= zim1,t−1zim2t is a dummy variable for unit i given the m2th
quadrature point for the integral with respect to αit given the m1th quadrature point
used for the integral with respect to αit−1 and ω

(h)
m1m2 denotes the m2th weight for the

integral with respect to αit given the m1th quadrature point for the integral with respect
to αi,t−1. The latter is computed as

ω(h)
m1m2

=
f (h)vm2 |vm1∑
l f

(h)vm2
|vm1

, m1,m2 = 1, . . . , q h = 1, . . . , k.

The EM algorithm alternates the following steps until convergence: the E-step of the
algorithm computes the conditional expected values of dummy variables given the ob-
served data and the current parameter vector θ̄; the M-step of the algorithm updates the
model parameters by maximising the posterior probabilities. Since the EM algorithm is
rather slow to converge, after a certain number of EM steps we switch to a full Newton-
Raphson algorithm to maximise the model log-likelihood �(θ). From the EM algorithm
we obtain the score vector as

s(θ) = E
θ̄=θ

[s∗(θ)|obs.data],

where the expected value is at the parameter value θ̄ and s∗(θ) = ∂�∗(θ)/∂θ is the
score vector of the complete-data log-likelihood whose expected value is computed at
the beginning of each M-step. We then compute the observed information matrix J(θ)
as the minus the numerical derivative of s(θ) obtained as above. The standard errors for
the parameter estimates are obtained from J(θ)−1 in the usual way.

The selection of the appropriate number of latent states in the latent Markov model
formulation is made relying on the BIC criterion (Schwarz, 1978), which is based on the
index

BIC = −2�(θ̂) + g log(n) (2)

where �(θ̂) denotes the maximum log-likelihood of the model of interest and g is the
number of parameters.

For the mixture latent auto-regressive model the selection of the number components
is made first selecting the number of quadrature points and then selecting the number of
mixtures according to the following strategy:
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- for a given k, we try to increase values of q until the maximum of �(θ) does not
significantly change with respect to the previous value of q. We start from q = 21
and increase it by 10 until the maximum of �(θ) is close to the previous value.
The difference is taken less than 0.001;

- we select the number of states relying on the BIC criterion in (2) which takes into
account the goodness-of-fit and the parsimony of the model.

It is important to mention that for both models we adopted a proper estimation procedure
to prevent problems due to the multimodality of the likelihood function by applying a
multi-start strategy combining a deterministic rule with a random starting rule. The nu-
merical work was undertaken on the R (R Core Team, 2013) package LMest (Bartolucci,
2012) in an improved version which will be available from http://cran.r-project.org/. It
provides maximum likelihood estimates of the model parameters and their correspond-
ing standard errors in a reasonable amount of time.

Moreover on the basis of the final parameters estimates (θ̂) we can compute the
predictions of the entire sequence of latent states αit for hospital i which corresponds to
the maximum with respect to h1, . . . , hk of the posterior probabilities. For the case of
the latent Markov model these are computed on the basis of the following expression:

α̃it =

k∑
h=1

= π̂∗
hf̂

(h) i = 1, . . . , n, t = 1, . . . , T.

where π̂∗
h denotes the estimate of the stationary probability for the h latent state which

depends on the transition probabilities π̂h1,h2
and f̂ (h) denotes the estimated posterior

conditional distribution of the latent variables.
For the case of the mixture latent auto-regressive model these are computed as:

α̃it =

k∑
h=1

q∑
m=1

̂(wihzimt)(ξ̂h + νmσ̂), i = 1, . . . , n, t = 1, . . . , T, (3)

where ̂wihzimt is the posterior density that subject i moves from state m1 to state m2 at
occasion t given that µj = h.

5. Results

We applied the proposed model to the available data illustrated in Section 2. First
we specify the discrete latent variable formulation and we estimate the latent Markov
model with parameterization (1) on the measurement model for an increasing number of
latent states. In Table 4 we show the results in terms of maximum log-likelihood and of
BIC index on the basis of which we select k = 4 latent states.

Then we specify the continuous latent variable formulation and we estimate the mix-
ture latent auto-regressive model for an increasing number of quadrature points for each
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number of mixture components. In Table 5 we report the results of this model selec-
tion procedure for the optimal number of quadrature points and the number of mixture
components according with the selection strategy illustrated in Section 4.

Table 4. Maximum log-likelihood of the latent Markov model, values of the BIC index
and number of parameters for k = 1, . . . , 5.

k = 1 k = 2 k = 3 k = 4 k = 5
log-likel. -522.254 -418.018 -377.330 -355.128 -348.327

BIC 1082.674 888.514 830.991 819.981 849.315
g 8 11 16 23 32

Table 5. Log-likelihoods and differences between consecutive values for the mixture
latent auto-regressive models with k = 1, 2, 3 and q from 21 to 111 with step 10; in
boldface are the differences between maximum values of consecutive log-likelihoods
which are smaller than 0.001 for the first time.

k = 1 k = 2 k = 3
q log-likel. diff. log-likel. diff. log-likel. diff.
21 -354.126 – -351.142 – -345.690 –
31 -356.444 -2.317 -356.115 -4.972 -347.193 -1.503
41 -360.820 -4.376 -355.536 0.579 -349.373 -2.180
51 -359.271 -1.549 -356.831 -1.295 -349.978 -0.609
61 -360.820 -1.549 -356.853 0.023 -349.982 -0.074
71 -360.820 -1.549 -356.853 0.023 -350.056 -0.003
81 -360.823 -0.005 -356.854 -0.000 -350.079 0.074
91 -360.824 -0.001 – – -350.077 -0.022

101 360.824 0.000 – – -350.080 0.002
111 – – – – -350.080 0.000

Table 6. Maximum log-likelihood of the mixture latent auto-regressive model for k =
1, 2, 3 and values of q = 91, 81, 111 respectively, values of BIC index and number of
parameters.

k k = 1 k = 2 k = 3
log-likel. -360.824 -356.854 -350.080

BIC 769.354 775.726 776.484
g 10 13 16

The selected number of quadrature points is equal to 91 for k = 1, 81 for k = 2 and
111 for k = 3. In Table 6 with respect to choice made in Table 5 we show the values of
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Table 7. Estimates of the latent Markov model with k = 4 (LM(4)) together with stan-
dard errors for regression coefficients and of the mixture latent auto-regressive model
with k = 1 (MLAR(1)).

LM(4) MLAR(1)
µ̂1 -47.073 -125.283
µ̂2 -52.617 -139.245
µ̂3 -58.841 -152.552
β̂1 beds 1.714 7.268

(0.547) (8.754)
β̂2 physicians 2.478 6.153

(0.590) (7.151)
β̂3 nurses 2.548 4.307

(0.721) (5.399)
β̂4 others -1.259 -1.908

(0.410) (2.401)
β̂5 surgery rooms 0.137 1.079

(0.283) (1.727)

BIC for each value of k according to the chosen value of q. On the basis of the BIC value
we select one mixture component. In Table 7 we show the estimates of the parameters
referred to the cut-points and the regression coefficients in equation (1), together with
the corresponding standard errors for both types of models to which we refer as LM
and MLAR. We use the translog function for the covariates (Christensen, Jorgenson,
and Lau, 1973). As noted by Bauer (2009) we have implicitly changed the scale of the
latent response variable and therefore we get that the estimates of the thresholds and
of the regression coefficients of the mixed latent auto-regressive model are on another
scale with respect to that of the other model. On the basis of the t-statistics that may be
computed for the regression coefficients, we conclude that the first four covariates are
significant on the latent Markov model with four latent states. On the other hand while
retaining the same sign all the covariates are not significant under the mixture latent
auto-regressive model. The effect of the number of beds and of the working hours of
physicians and nurses is positive, while the effect of working hours of the other staff
of the hospital is negative, indicating that in the wards considered the main important
features are the first three. We conclude that the dimension of the hospital has a positive
effect on the efficiency and that the hospital staff which is not directly related with
the treatment of the patient may contribute to inefficiency for the hospital. With the
latent Markov model the estimated initial probabilities in each state are π̂1 = 0.22,
π̂2 = 0.31, π̂3 = 0.28, π̂4 = 0.19. Under the mixture latent auto-regressive model with
one component all the hospitals are in one class with high auto-correlation coefficient
(ρ̂1 = 0.911) which is statistically significant (s.e. 0.361) and σ2 = 14.556.
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Table 8. Estimates of the transition probabilities πh1h2 under the LM(4) model.

π̂h1h2

h2 h1 = 1 h1 = 2 h1 = 3 h1 = 4
1 0.911 0.042 0.047 0.000
2 0.064 0.936 0.000 0.000
3 0.000 0.037 0.907 0.056
4 0.000 0.000 0.089 0.911

Due to the adopted parameterization the cut-points correspond to different levels
of the propensity of the hospital to have high levels of efficiency. The value of the
first cut-point is higher then the others therefore the first latent state corresponds to
those hospitals with the highest propensity towards efficiency. The fourth latent state
corresponds to those hospitals with the lowest propensity to be efficiency. Regarding the
distribution of the latent process for the LM(4) model in Table 8 we report the estimates
of the transition probabilities. Looking at the estimates of the parameters of the transition
matrix we can see the evolution of the probabilities of each state and therefore we can
dispose of a characterization of the pathways of each of the four groups. The matrix is
not symmetric and the persistence in the same latent state for the entire period is high.
The hospitals which have a medium/high level of efficiency i.e which are in latent state
2, in the previous year tend to become more efficient in the next year and those less
efficient i.e. which are in latent state 4, in the previous year tend to be more efficient as
time goes.

The predicted values of αit according to (3) and (4) with respect to the time occasion
t are showed in Figure 1 for both selected models. The single predicted profile trajecto-
ries are less regular under the LM(4) model rather than under the MLAR(1) model. This
means that we can detect in a more appropriate way the changes observed in the hospital
which are due to events which are not observed through the covariates. Such prediction
may be also used in a way to correct in advance some opportunistic behaviours of the
hospitals in a cost effective strategy. The predicted values can also be used to rank the
hospitals according to best and worst performer in terms of potential efficiency gains.

6. Conclusions

We have shown a model specially tailored for longitudinal data having an ordinal
structure with time-varying latent effects and covariates. The model accounts for two
types of formulation of the latent effect. The first one assuming a discrete distribution
gives rise to a latent Markov model which is not very complex to fit. It is more natural
in many contexts and very suitable for classification even if the number of parame-
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Figure 1. Predicted values of αit, t = 2, ..., T under the latent Markov model with k = 4
(top), the auto-regressive mixture model with k = 1 (bottom).
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ters increases with the number of latent states. The second model formulation relies
on a continuous distribution for the unobserved heterogeneity. It gives rise to a mix-
ture latent auto-regressive model which is more complex to fit as the distribution of the
observed data given the covariates is obtained by solving a T dimensional integral. Max-
imum likelihood estimation of the model parameters is performed by a joint use of the
Expectation-Maximization algorithm and of the Newton-Raphson algorithm. Standard
errors for the parameter estimates are obtained by exploiting the observed information
matrix. The number of latent states are selected by considering the BIC index for the
latent Markov model and by an appropriate strategy for the mixture components.

To illustrate the proposal we applied the models to data related to the hospitals by
considering a derived ordinal variable which accounts for the efficiency of the hospital
spending policy observed over a four year period. The adopted parameterization on the
response variable is based on global logits for each cut-point and it allows to measure
the direct effect of each available covariate. When we estimate the model by relaying on
a discrete distribution of the unobserved heterogeneity we select a latent Markov model
with four latent states. The latter are clusters of hospitals sharing the same propensity
towards efficiency gains. The covariates number of beds, yearly hours of activity of
physicians and nurses are significant and positive, indicating the main important fea-
tures of the hospital to get efficiency gains. The estimated transition matrix is useful
to characterize pathways of the hospitals. When we estimate the model by relaying
on a continuos distribution of the unobserved heterogeneity we select a mixture latent
auto-regressive model with one component and none of the covariates are significant.

Finally, we show the prediction of the individual effect for every hospital at each time
occasion on the basis of the parameter estimates. We notice that the predicted profile
trajectories are less regular under the latent Markov model then under the mixed latent
auto-regressive model. Therefore we conclude that the latent Markov model with four la-
tent states allows us for less erratic trends of the hospital effects across time with respect
to the other model formulation. To our knowledge the mixture latent auto-regressive
formulation may be more promising when we dispose of many time occasions. The pre-
dicted values can also be used to rank the hospitals according to the best and the worst
performer in term of potential efficiency gains as well as to correct in advance some
opportunistic behaviours of the hospital.
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Summary: This paper provides an overview of the approach of the Anchoring Vignettes, 
introduced ten years ago to analyse self-reported ordinal survey responses taking into 
account individual heterogeneity in the interpretation of the questions. The main char-
acteristics and assumptions of this approach are reviewed, as well as two different sta-
tistical solutions introduced for dealing with vignette data. Special attention will be 
paid to the current discussion on some critical points and hints for future researches 
on this approach. An empirical application using information collected by some 
longitudinal vignettes within the Survey of Health, Ageing and Retirement in Europe 
(SHARE) will show the potentialities of this methodology.
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1. Introduction

Vignettes have a long history in investigating social phenomena (Nosanchuck, 1972)
and can be defined as “short descriptions of a person or a social situation which contain
precise references to what are thought to be the most important factors in the decision-
making or judgement-making process of respondents” (Alexander and Becker, 1978).

However, only ten years ago, King et al. (2004) introduced in the literature some sta-
tistical solutions exploiting the vignettes as an additional tool to identify and correct the
systematic differences in the use of response scales within countries or socio-economic
groups. This approach aims at making comparable, across respondents, self-evaluations
affected by individual unobserved heterogeneity. Since the ratings of the vignette per-
sons provide an anchor (a gold standard) for adjusting self-ratings, these instruments
have been called anchoring vignettes.
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The presence of individual heterogeneity leads respondents to interpret, understand
or use the response categories for the same questions differently (Holland and Wainer,
1993). This evidence of response scale differences is known as Differential Item Func-
tioning (DIF) in the educational testing literature or Response Style (RS) in the psycho-
logical setting (Paulhus, 1991).

In social and economic sciences there is a large use of subjective evaluations reported
by survey respondents, from personal health to life satisfaction, from work disability
to job satisfaction. Avoiding to take into account the (not-random) heterogeneity in
reporting styles across different respondents may systematically bias the measurement
of the variable of interest, obtaining misleading assessments of the relative performances
in cross-cultural comparisons.

Despite the youthfulness of the King et al. (2004) contribution, the interest on the
anchoring vignette approach has rapidly increased, both in terms of data collection and
in terms of empirical applications. At the same time, a correct application of this in-
strument requires the fulfilment of some assumptions, which have not been adequately
considered in many cases.

The aim of this paper is to provide a general overview of the anchoring vignette
approach and its applicability, pointing out advantages and limitations, showing an em-
pirical application and leaving some reflections and open questions for further debates.
This contribution does not aim at providing evidence in favour or against the vignette
assumptions. However, since this issue has now become a key research argument on
this literature, we report a discussion of the state of art on the validity of the vignette
assumptions.

The paper is organised as follows. In the next section the idea of the anchoring
vignettes and how they work in practice to correct for DIF is introduced. Section 3
will briefly show the non-parametric and parametric solutions working with vignettes,
while in Section 4 a detailed discussion on the main vignette assumptions is reported.
An empirical application showing how the parametric solution and some extensions can
help to correct for individual heterogeneity in reporting behaviour is presented in Section
5. Section 6 concludes the paper, summing up the main points of the current debate on
vignettes and suggesting some directions for future researches.

2. How do anchoring vignettes work?

    A growing number of socio-economic surveys is now designed to forcefully support 
cross-national or cross-population group researches. One the of main challenges conduct-
ing such studies in practice is the harmonisation of concepts, measures and survey de-
signs across different social and cultural settings, in order to enhance data comparability. 
     However, in many areas (for instance, economics, health, psychology, etc.) method-
ologies and instruments for obtaining common measurements are not well understood; 
at the same time, the definition and the collection of quantitative objective measures are
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often hard to attain. For this reason, self-reported measures on the domain/aspect under 
investigation are widely adopted tools in cross-cultural studies. However, self-evaluation 
judgements are usually misled by respondents because they convey the real (but unob-
served) value on the concept of interest plus DIF. For instance, self-reported data on life 
satisfaction are often used in the analysis of population well-being, even though there is 
wide evidence of large cross-country differences in the individual reported level of life 
satisfaction (Kahneman et al., 2004; Angelini et al., 2013). This happens because re-
spondents use different benchmarks or scales in evaluating themselves, even when they 
are similar according to economic and non-economic conditions. To this aim, investi-
gating self-evaluations of life satisfaction, Clark et al. (2005, page C118) note that these 
measures ”... are ordinal. A life satisfaction score of 6, on a scale of 1 to 7, does not 
correspond to twice as satisfied a s a  s core o f 3 . I n t his o rdinal w orld, 6  o nly means 
more than 5 and less than 7... One worry regarding statistical analysis of subjective vari-
ables is that some people look at life pessimistically or optimistically, even though there 
is really no difference in their level of well-being. This anchoring effect or intercept 
heterogeneity is a source of potential bias...”.

Scale differences across respondents may be due to objective differences in the in-
dividual characteristics, as well as to different interpretations of numerical scales or
cultural differences in the norms for what is called ”Very good”, ”Good”, etc. or ”Some
say”, ”Little say”, etc.

Figures 1 provides an example on this heterogeneity of scale definitions across in-
dividuals. The domain under investigation is the measurement of political efficacy. In 
Figure 1, two types of individuals (i and j) interpret the same answer category differ-
ently in the upper and lower scales: respondent i turns the own (unobserved) level of the 
domain of interest ỹ´ into the category ”Little say”, while respondent j turns the same 
latent location into the category ”Some say”. Alternatively, for the same unobserved 
level ỹ´́  respondent i would declare a self-assessment of ”Some say”, while ”Unlimited 
say” would be declared by respondent j. The notion of having ”Some say” in govern-
ment is completely different between the two respondents. According to the self-ratings, 
respondent j has much more say than respondent i in getting the government to address 
issues that interest him/her, while according to the actual values there are no differences 
between them. Since the actual self-assessments provided by the two respondents are 
identical, the differences in the reporting evaluations must be due to DIF.

Anchoring vignettes are conceived as additional questions to answer by respondents,
to adjust the self-evaluation in order to provide a DIF-free measurement of the concept
of interest. This allows enhancing comparability (across countries or socio-economic
groups) of the subjective assessments, because all of these evaluations are now reported
to a common and DIF-free scale. As a rule, respondents rate themselves and many
anchoring vignettes, which represent various levels of the trait of interest (i.e. life satis-
faction or work disability). Each vignette is a brief text where an hypothetical individual,
manifesting just the trait of interest, is depicted to a lower or higher level of severity.

Three examples of vignette questions (whose aim is to analyse work disability re-
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porting) are listed below:

Kevin suffers from back pain that causes stiffness in his back especially at work but is
relieved with low doses of medication. He does not have any pains other than this
generalized discomfort.

Anthony generally enjoys his work. He gets depressed every 3 weeks for a day or
two and loses interest in what he usually enjoys but is able to carry on with his
day-to-day activities on the job.

Eve has had heart problems in the past and she has been told to watch her cholesterol
level. Sometimes if she feels stressed at work she feels pain in her chest and
occasionally in her arms.

How much is [Kevin/Anthony/Eve] limited in the kind or amount of work [he/she]
could do?

These vignettes follow the self-evaluation question: Do you have any impairment 
or health problem that limits the amount or kind of work you can do? The same 
answer categories as for the self-rating are available in all vignette questions (1=None; 
2=Mild; 3=Moderate; 4=Severe; 5=Extreme).

The basic idea on the vignette adjustment can be summarised by the example of
Figure 2 (based on the measurement of political efficacy as in Figure 1), since it shows
how the variation in the answers to three vignette questions provided by two different
respondents may be used to construct a common scale of measurement across these in-
dividuals. The idea is to rescale the individual own self-rating on that common scale (the
respondent 2’s reported scale is deformed into one scale that is comparable to respondent
1’s scale), taking into account the ordering of the individual responses.

The statistical solutions developed for using vignette data require two basic assump-
tions, response consistency and vignette equivalence. The first assumption is needed
for connecting the individual ratings of the anchoring scenarios to the individual self-
ratings: each respondent applies the same cutpoints for the self-evaluation as for the
evaluation of the person depicted in the vignette question. The second assumption is
essential for obtaining a DIF-free measurement of the variable of interest to be used as
an anchor: each respondent perceives the (unobserved) level of the variable represented
in any vignette in the same way (in other words, at same location on the latent scale).
A detailed discussion on the meaning and the validity of each assumption is provided in
Section 4.

The anchoring vignettes have been so far applied in several health and socio-eco-
nomic domains, where subjective self-ratings reported by survey respondents are fre-
quently used. Among them: political efficacy and visual activity (King et al., 2004);
work disability (Kapteyn et al., 2007); health (Bago d’Uva et al., 2008; Grol-Prokopczyk
et al., 2011a); health system responsiveness (Rice et al., 2012); job satisfaction (Kris-
tensen and Johansson, 2008); life satisfaction (Angelini et al., 2013); satisfaction with
social contacts (Bonsang and van Soest, 2012); marketing (Paccagnella, 2014).
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Figure 1. Turning the continuous unobserved level of self-ratings into reported ordinal
categories for respondents i and j, subject to DIF. Source: Wand (2013).

Figure 2. Rescaling self-ratings through the anchoring vignettes. Source: King et al.
(2004).
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3. The parametric and non-parametric solutions

The survey instruments and the measurement assumptions are combined together in
order to introduce two different statistical solutions for this approach, a non-parametric
and a parametric methodology (King et al., 2004; King and Wand, 2007).

3.1. The non-parametric solution

The non-parametric approach shows some important advantages: i) it is easy to
implement; ii) it does not need any other assumptions than response consistency and
vignette equivalence; iii) it does not need any explanatory variables. However, it also
suffers from two main not-trivial disadvantages: i) each respondent has to answer to all
vignette and self-reported questions (sometimes this can be difficult to administer); ii)
it is statistically inefficient in some circumstances (even though this is typical of many
non-parametric solutions).

At the beginning, these limitations have prevented the application of this solution in
the empirical analysis. Since a few years, researchers have paid much more attention
to the potentialities of the non-parametric solutions (Wand, 2013). On the one hand, a
branch of the literature aims at comparing the performances of both parametric and non-
parametric estimators to adjust for reporting heterogeneity (Jones et al., 2012). In gen-
eral, both approaches lead to similar conclusions. On the other hand, the non-parametric
solution could be exploited for testing the validity of the vignette assumptions (van Soest
and Voňková, 2014). However, the literature on the non-parametric modelling is still
lacking.

The idea of the non-parametric solution is to recode self-ratings relative to the set of
vignettes. Self-evaluations are compared mapping them according to the scale fixed by
the vignette evaluations in each country or socio-economic group.

Given the content of the vignettes (i.e. the severity of the problem depicted in each
vignette scenario), the ranking of the vignette evaluations used by the majority of the
individuals belonging to each country or group defines a natural ranking of vignettes
for that country or group. For each respondent i (i=1,...,N ), let Yi be the categorical
self-evaluation and Zij be the categorical evaluation of vignette j (j=1,...,J). Assuming
that the natural ranking is Zi,j−1 < Zij , for all i, j, the adjusted (DIF-corrected) variable
is given by:

Ci =





1 if Yi < Zi1

2 if Yi = Zi1

3 if Zi1 < Yi < Zi2

...
...

2J if Yi = ZiJ

2J + 1 if Yi > ZiJ

(1)
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The C-scale provides a new but DIF-free ordinal variable Ci, which can be studied
by standard models for the analysis of ordinal data as ordered probit, contingency tables,
etc.

In each data collection there could be cases where a respondent either evaluates the
vignettes in a way different from the natural ranking, or provides the same rating to
more vignettes. These inconsistencies are grouped and treated as ties and the loss of
information due to them leads to the inefficiencies of this non-parametric solution. In
such cases, Ci assumes a set of values rather than a single one.

Dealing with these ties represents a strong limitation to the implementation of this
approach. King et al. (2004) suggest allocating Ci by assuming a uniform distribution
for the values across the specified range; King and Wand (2007) extend the approach by
developing a censored ordered probit modelling; Wand (2013) introduces the B-scale,
which basically locates each self-rating relative to the average perceived location of the
anchoring vignettes.

The B-scale provides an alternative solution to the C-scale, with the advantage of
producing credible comparisons, asking for weaker assumptions. Indeed, the B-scale
approach relaxes the vignette equivalence assumption. It requires the weaker condi-
tion that the perception of the vignettes are on the same side as the true location of the
vignette relative to the respondent’s own location (as an example, if a certain vignette
depicts a hypothetical individual whose health is poorer than the respondent’s health, the
respondent cannot perceive this hypothetical individual to be healthier). Wand (2013)
defines it as the Order Preserving Imperfect Anchors (OPIA) assumption. He also
shows that inferences based on interpersonal comparisons may change according to the
(stronger or weaker) assumptions that are invoked.

3.2. The parametric solution

The parametric approach has some important advantages: i) there is no need to col-
lect the answers of all proposing vignettes for each respondent1; ii) it avoids the sta-
tistically inefficiencies of the non-parametric approach, recognizing that the variable of
interest is perceived with a measurement error (i.e. idiosyncratic errors can explain vi-
olations of the natural ordering of the vignette evaluations provided by respondents);
iii) thresholds are allowed to vary across respondents as a function of a set of observed
variables. However, the parametric solution also suffers from some important disad-
vantages: i) it needs some additional assumptions other than response consistency and
vignette equivalence, such as the specification of the function (only linear so far) relat-
ing the observed characteristics and the unobserved components, the functional shape of
the thresholds and the distributional form of the error terms; ii) the response consistency

1 Analysing longitudinal data or repeated cross-sections, researchers could include the vi-
gnettes on only some of the waves. However, investigating self-reported work disability among 
old people, Angelini et al. (2011) show that individual reporting styles are not stable over time.
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assumption is crucial for identifying the parametric model using vignettes.
The parametric model is referred to as the Compound Hierarchical Ordered Probit 

(chopit) model, even though many researchers use the term hopit model equivalently. In 
a broad sense the chopit model can be seen as a generalisation of the standard ordered 
probit approach (even if the ordered probit is not formally nested into the chopit model), 
where DIF is modelled through variations in the thresholds.

The chopit model is basically composed by a self-assessment equation and as many
vignette equations as the number of collected vignette questions.

In the original specification (King et al., 2004), the unobserved continuous response
Y ∗
i , which measures the perceived own level of the variable of interest (health status,

life satisfaction, etc.) of respondent i, is modelled as follows:

Y ∗
i = Xiβ + εi
εi ∼ N(0, 1)

(2)

Yi = k if τk−1
i ≤ Y ∗

i < τki

−∞ = τ0i < τ1i < . . . < τKi = ∞

τ1i = γ1Vi

τki = τk−1
i + exp

(
γkVi

)
k = 2, · · · ,K − 1

(3)

It is assumed a linear combination of some individual observed variables Xi and
an unobserved term component to model Y ∗

i . With this specification, the error term εi
reflects both individual unobserved heterogeneity and reporting error. The reported cat-
egories (Yi) are obtained by means of a threshold model with individual-specific thresh-
olds, that are modelled as a function of individual variables Vi (which may overlap the
set of Xi variables). The exponential assumption in (3) guarantees that these thresholds
increase with k.

The evaluations of J (j = 1, ..., J) vignettes by the same respondent i are modelled
as follows:

Z∗
ij = θj + uij

uij ∼ N(0, σ2
u)

uij ⊥ (εi, Xi, Vi)
(4)

Zij = k if τk−1
i ≤ Z∗

ij < τki

Here, Z∗
ij represents the unobserved perceived level provided by respondent i of

the variable of interest described in vignette j. According to the vignette equivalence
assumption, θjs do not vary across respondents. According to the response consistency
assumption, the thresholds τki are the same as the self-assessment equation (in other
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words, respondent i evaluates each vignette on the same scale as is used for the self-
evaluation).

Some extensions of the standard chopit model have been already introduced in the
literature.

Kapteyn et al. (2007) allow that threshold equations can vary both with a set of ob-
served individual characteristics and with an individual unobserved heterogeneity term
ξi. Equation (3) is then replaced by:

τ1i = γ1Vi + ξi
τki = τk−1

i + exp
(
γkVi

)
k = 2, · · · ,K − 1

ξi ∼ N(0, σ2
ξ )

ξi ⊥ (εi, uij , Xi, Vi)

(5)

The model specification with this unobserved heterogeneity term added in the thresh-
old equations reduces substantially some misspecification problems of the original cho-
pit model (van Soest and Voňková, 2014). The original King’s et al. model is derived
imposing the condition σ2

ξ = 0.
Kapteyn et al. (2007) also argue that respondents can perceive differently the vi-

gnette when the same hypothetical scenario describes a female instead of a male person.
Consequently, respondents may use different thresholds when evaluating a vignette with
a female name instead of a male name. This behaviour could potentially violate the
response consistency assumption and for this reason Kapteyn et al. (2007) suggest to
specify in the vignette equation a gender dummy variable of the scenario description.
However, this model extension can be applied only when the survey plans to collect
vignette data with a gender randomization of the individual depicted in each vignette.

Paccagnella (2011) extends the standard chopit model in order to account for sample
selection bias. In cross-country comparisons of self-reported measures this problem may
lead to inconsistent results, in particular when the country non-response patterns (due
for instance to the lack of standardized fieldwork procedures) are not missing at random.
This model adds a third component (the selection equation) to the self-assessment and
vignette equations: the reported categories Yi and Zij are observed only if a selection
condition (Si) applies. The selection rule is defined as:

S∗
i = Wiδ + ηi

Si =

{
1 S∗

i > 0
0 otherwise

where Wi is a set of exogenous variables (Wi may overlap Xi, even if it is a good
practice to specify at least one exclusion restriction), δ is a vector of parameters to be
estimated and ηi is an error term. A shared random effect ωi is specified to introduce
dependence between the three error terms:

εi = φωi + ψi

uij = λjωi + ςij

ηi = ωi + νi
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where ωi, ψi and νi are independently normally distributed with zero mean and unit
variance and ςij is independently normally distributed with zero mean and variance σ2

j .
The reported categories and thresholds are defined as before.

Angelini et al. (2011) introduce a longitudinal chopit model, in order to investigate
to what extent individual reporting styles are stable over time. This model specification
allows to introduce time varying covariates. At the same time, unobserved terms are split
in individual-specific time invariant components and idiosyncratic time varying errors.
Formally, let t=1,2,...,T the time periods, Y ∗

it be the perceived own level of the variable
of interest by respondent i at time t and Z∗

ijt be the unobserved level of the variable of
interest described in vignette j as perceived by individual i at time t. The longitudinal
chopit model is defined as:

Y ∗
it = Xitβt + εit

Z∗
ijt = θjt + uijt

where Xit are time-variant observed variables, βt is the vector of (time-variant) pa-
rameters to be estimated (without constant for identification) and θjt are vignette- and
time-specific dummies. The error term for the self-assessment equation is defined as:

εit = ηi + ωit

ηi ∼ N(0, σ2)

ωit ∼ N(0, 1)

ηi ⊥ ωit

ωit ⊥ ωis, t �= s

while the error term for the vignette equation is defined as

uijt = ςij + νijt

ςij ∼ N(0, ρ2)

νijt ∼ N(0, τ2t )

ςij ⊥ νijt

νijt ⊥ νijs, t �= s

ηi ⊥ ςij

The reported categories are obtained through:

Yit = k if τk−1
it ≤ Y ∗

it ≤ τkit, k = 1, · · · ,K
Zijt = k if τk−1

it ≤ Z∗
ijt ≤ τkit, k = 1, · · · ,K

where −∞ = τ0it < τ1it < . . . < τKit = ∞ and, accordingly with Equation (3), the
thresholds are modelled as a function of exogenous variables Vit and a vector of param-
eters γt:

τ1it = γ1
t Vit

τkit = τk−1
it + exp

(
γk
t Vit

)
k = 2, · · · ,K − 1
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Standard chopit model or its extensions are estimated maximizing the log-likelihood
function and integrating out the random terms.

4. Assumptions

4.1. Response Consistency

The response consistency assumption states that each respondent adopts the same
thresholds τki for the self-ratings and the vignette evaluations. In other words, the way
in which people evaluate themselves is equal to the way in which they evaluate other
individuals.

The interpretation and the adoption of individual response scales are widely dis-
cussed in the scientific literature and deviations from the use of the same response scales
in many domains is well documented. Justification bias (Bound, 1991) is an interesting
example of this occurrence: for a given level of the “true health”, individuals who are
not working understate their health in order to justify their (un)employment status. In-
vestigating the role of the pain in some self-reported work disability comparisons, Banks
et al. (2007) point out how pain can be both a subjective and an objective manifestation
and, for this reason, respondents can react very differently in front of the same amount
of pain. Moreover, in the psychological literature it is well know the self-enhancement
bias, defined as “the tendency to describe oneself more positively than a normative cri-
terion would predict” (Krueger, 1998).

Testing validity of this assumption is the topic of a growing empirical literature.
A branch of the literature follows the solution suggested by van Soest et al. (2011). 

On the one hand, they relax the response consistency assumption, allowing that response 
scales used to evaluate themselves could differ from the ones adopted for the vignette 
evaluation. On the other hand, the parameter identification relies on the availability of 
an objective indicator of the construct of interest, that are supposed to capture all 
variation in this construct associated with observed individual features. The indicator 
is defined as “objective” because it has to be unaffected by reporting heterogeneity, but 
driven by the same underlying latent process that produces self-ratings (the so-called 
one-factor assumption). This objective measure is modelled by means of a standard 
ordered probit model (in other words, in this model specification the thresholds between 
the categories are unknown constants). If the one-factor assumption holds, a formal test 
of response consistency can be obtained comparing the model imposing both the one-
factor and the response consistency assumption with a model imposing the one-factor 
assumption only. van Soest et al. (2011) implement this approach to test the response 
consistency assumption investigating drinking behaviour in Ireland. They exploit the 
information collected on the number of drinks consumed by the respondents and their 
findings support the vignette assumption.

The same methodological solution is used by Datta Gupta et al. (2010) to test re-
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sponse consistency in the context of work disability vignettes among old Europeans. The
grip strength measure is adopted as the objective indicator of work disability and their
findings do not support the vignette assumption. However, while the number of drinks
consumed by the respondents is arguably a good proxy of the self-reported drinking be-
haviour, the choice of a grip strength measure as an objective indicator is questionable
in a multidimensional context like work disability.

Deriving a meaningful proxy which takes into account a variety of individual aspects
in the domain of interest could be demanding.

To this aim, Bago d’Uva et al. (2011) extend the van Soest et al. (2011) approach,
proposing tests of response consistency that rely on the assumption that a battery of
objective indicators is available. They perform a strong and a weak test in the health
domains of cognitive functioning and mobility, applied to a dataset of old English re-
spondents. For mobility, both tests reject response consistency, while for the cognitive
domain only the strong test rejects the assumption validity.

Grol-Prokopczyk et al. (2011b) analyse data coming from the WHO Study on Global
AGEing and Adult Health (SAGE) on six non-European countries in the mobility and
vision health domains. They support response consistency comparing cutpoints from
vignette ratings and cutpoints generated from some objective measures of health.

van Soest and Voňková (2014) construct specification tests comparing non para-
metric rankings that come directly from the raw data with rankings implied by some
parametric solutions. They apply them on six health domains (breathing, concentra-
tion, depression, mobility, bodily pains and sleep) of an aged population coming from
eight European countries: while the standard chopit model always rejects response con-
sistency, this is no longer valid for several health domains and socio-economic char-
acteristics adopting the chopit model that incorporates unobserved heterogeneity in the
threshold equation.

Using some qualitative analysis of the interview responses, Au and Lorgelly (2014)
find that response consistency might not hold for a part of the sample respondents. How-
ever, they also provide some suggestions for making more consistent the validity of this
assumption.

Kapteyn et al. (2011) introduce a new and interesting way to test this assumption.
By means of an experiment conducted in the internet RAND American Life Panel, re-
spondents are first asked to describe and rate their health and, in a subsequent interview,
to evaluate some vignettes that are - in fact - descriptions of their health. Under some
auxiliary assumptions related to the validity of the experiment, they analyse five health
domains (sleep, mobility, concentration, breathing and affect) obtaining mixed evidence:
according to a non-parametric approach, response consistency holds in the domain of
sleep, while the other domains reject either the auxiliary assumptions or the response
consistency assumption. The validity of the auxiliary assumptions creates much more
problems adopting a parametric solution for this testing.



Anchoring vignettes and the chopit model 81Anchoring vignettes and the chopit model 13

4.2. Vignette Equivalence

Vignette equivalence is the most controversial assumption on the vignette topic, so
that it now represents the strongest criticism to this approach. This assumption states
that the situations depicted in each vignette are perceived in the same way by all respon-
dents, apart from a random measurement error. In other words, any differences across
respondents in the perceived level of the variable represented in each vignette must be
random and independent of the characteristic being measured.

Violation of the vignette equivalence assumption may occur more often than ex-
pected. For instance, in different countries the same scenario may be interpreted less
or more problematic according to religion (i.e. mentioning suicide in Catholic vs non-
Catholic populations), socio-economic status (i.e. considering a certain amount of earn-
ings or unemployment benefits in countries with a more developed welfare state vs coun-
tries with less advanced states), health status (i.e. quoting obesity in malnourished vs
well-nourished people) and so on.

Hence, it is not surprising there is a general agreement on that, before any analysis
or validation testing, vignette wording may be a key for improving vignette equivalence:
cultural- or linguistic-specific references have to be avoided in order to guarantee a log-
ically coherent and consistent meaning in different cultures. On the other hand, the
validity of the vignette equivalence is also strictly related to the domain under examina-
tion.

Voňková and Hullegie (2011) investigate how the approach is sensitive to the domain
and the choice of the vignette for three domains of health (cognitive functioning, breath-
ing and mobility) among old European respondents. The vignette approach indicates
an important sensitivity to the choice of the vignette for cognition and a weak sensitiv-
ity for breathing, while the approach is basically not sensitive for mobility. Jürges and
Winter (2013) use data from a survey experiment conducted on a large sample of older
US individuals to study the effect of vignette names and their connotations on ratings
of some vignettes in the domain of mobility. They find that vignette ratings may be
sensitive to the gender of the person described in the vignette (in line with the reasoning
of Kapteyn et al., 2007), as well as to the age implied by the first name (but for older
respondents only). Cognitive functioning and mobility domains for old English respon-
dents have been investigated also by Bago d’Uva et al. (2011) in their testing of the
vignette equivalence validity. They test a necessary condition for this assumption, to be
applied when at least two vignettes are available and under the hypothesis that response
consistency assumption holds. Choosing a certain vignette as reference and specifying
in the other vignette equation(s) that a set of individual characteristics impacts on the
vignette evaluation, the necessary condition for vignette equivalence states there is no
systematic variation in the perceived difference between the levels of the variable of
interest represented by any two vignettes. Finding statistically significant variables pro-
vides evidence of the presence of systematic differences in the perception of a vignette
relative to the reference, therefore violating the assumption. Their results are against
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the vignette equivalence validity. It is worth noting the findings from this set of stud-
ies: within the same health domain (mobility), there is evidence of a strong, mild or no
rejection of the vignette equivalence assumption with respect to an old population of,
respectively, English, US or European (excluding English) respondents.

There is a growing empirical literature devoted to the administration of the vignette 
questionnaire, for understanding effects due to priming, the ordering of vignettes and 
self-assessments (Buckley, 2008; Hopkins and King, 2010). Reversing the order of the 
questions (vignettes first a nd s elf-assessment q uestion t hen, i nstead o f t he traditional 
order where self-ratings are asked at the beginning) may allow for a better correction of 
DIF. However, randomisation strategies in the order of the questions are suggested as 
means to reduce question order biases.

Rice et al. (2011) adopt different strategies and employ both non-parametric and
parametric methods to assess the validity of the vignette equivalence assumption. Their
results do not contradict this assumption. A test based on the global ordering of vignettes
is also used by Angelini et. al (2013) in supporting vignette equivalence.

Using a large dataset coming from the WHO Study on Global AGEing and Adult
Health (SAGE) and the World Health Survey (WHS) on ten international countries and
eight health domains (mobility, affect, pain, social relationships, vision, sleep, cognition,
and self-care), Grol-Prokopczyk et al. (2011b) support vignette equivalence assumption
according to a test based on the global ordering of vignettes, while reject its validity
according to the test, as described above, introduced by Bago d’Uva et al. (2011).

Ferrer-i-Carbonell et al. (2011) and Peracchi and Rossetti (2013) provide other ev-
idence against vignette equivalence. However, in both cases, the model specification
diverges from the usual chopit modelling, particularly for the former contribution. Dif-
ferently from the other contributions, Peracchi and Rossetti (2013) examine the validity
of the vignette equivalence by means of a joint test of the overidentifying restrictions im-
plied by both vignette assumptions. They also find that these overidentifying restrictions
are less likely to be rejected using only one vignette (among all available) or performing
them separately by subgroups of respondents.

In the end, vignette equivalence assumption can be weakened analysing panel data
on vignettes (Angelini et al., 2011). Indeed, when longitudinal information is available,
the unobserved component in the vignette equation can be split in an individual specific
random effect and an idiosyncratic error. This allows to relax the standard vignette
equivalence assumption and therefore asking that the situation depicted in each vignette
is on average perceived in the same way by each respondent.

5. Using vignettes to correct for DIF: an empirical application

This section presents a small application of the parametric solution to correct for the
differences in the reporting scales. We do not test the validity of the vignette assump-
tions. Indeed, on the one hand, the goal of this empirical application is to show just
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the potentialities of this approach by means of a counterfactual example: a benchmark
(e.g. the scale of a particular country) may be defined and the adjusted distributions of
the variable of interest, based on the benchmark scale instead of the respondent own
scale, are computed for all respondents. The adjusted measures of the self-evaluation
reporting are on a common scale, purged from DIF, hence easily to be compared. On the
other hand, we aim at presenting how some extensions of the chopit model may change
the final results, once we take into account additional information related to the survey
design and the data collection.

To this aim, we use vignette data drawn from the first and second waves of SHARE
(Survey of Health, Ageing and Retirement in Europe), collected after a CAPI survey
by means of paper and pencil questionnaires in 2004/05 and in 2006/07, respectively.
SHARE is a panel survey that collects detailed data on health, socio-economic status and
social and family networks of citizens aged 50 and over from 19 European countries.

In particular, we focus on the three longitudinal vignette questions that involve work
disability measures. The same respondents are asked to rate twice the presence and
severity of problems reducing their working abilities, as well as those of the hypothetical
individuals described in the vignettes. The self-assessment and the vignette questions
asked in both waves are exactly the ones reported in Section 2.

For our purpose, we keep only those respondents who have answered to both the
self-reported and all vignette questions in both waves. As a consequence, the final sam-
ple is composed by 1265 individuals, coming from 8 countries (Sweden, Germany, the
Netherlands, Belgium, France, Spain, Italy and Greece). Respondents are mainly fe-
males (56.6%) and 56 years old on average.

An individual is defined as work disabled if he/she has a ”moderate”, ”severe” or
”extreme” impairment or health problem that limits the kind or amount of work he/she
can do.

According to the above definition, the percentage of individuals who rate themselves
in the whole sample as work disabled (unadjusted measures) is about 16%. Adjusted
measures are carried out after the chopit model (or its extensions) estimates, by means
of some counterfactual exercises, that is calculating the percentage of all respondents,
regardless of the country of belonging, who report work disability if they used the wave1
(2004/05) Italian thresholds instead of their own thresholds.

Self-ratings are therefore compared with the adjusted (DIF corrected) measures ob-
tained from: i) the baseline solution (i.e. a chopit model not allowing for any threshold
variation. This is a model specification very close to the standard ordered probit so-
lution); ii) the standard chopit model (King et al., 2004); the chopit model accounting
for individual heterogeneity in the thresholds (Kapteyn et al., 2007); the chopit model
accounting for sample selection (Paccagnella, 2011); the longitudinal chopit model (An-
gelini et al., 2011).

Parameter estimations of each aforementioned model are reported from Tables 1 to
5 in the Appendix. In all models we control for the same set of variables, including:

Demographic characteristics: Gender (male as reference), age in classes (younger than 55
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years as reference), education (no or low, middle and high, with “No or low 
education” as reference category) and household size.

Cognitive abilities: Word list learning test result - immediate recall (in this test, re-
spondents are required to learn a list of ten common words and then will be asked
to recall as many words as possible).

Depression and risk behaviour: Dummy variables equal to one when respondent is
depressed, according to the EURO-D depression scale, overweighted and obese.

Physical health status: Maximum grip strength result and dummy variables equal to
one when respondent has two or more chronic diseases, two or more symptoms,
two or more limitations with mobility and arm function, one or more limitations
with activities of daily living (ADL), one or more limitations with instrumental
activities of daily living (IADL).

Country dummies: Italy as reference category.

Exclusion restrictions: (only for the model accounting for sample selection) Inter-
viewer gender (male as reference) and interviewer age.

Cross-country differences clearly appear in each chopit model estimate. Moreover,
results show the presence of some individual-specific thresholds: country dummies,
physical health status, cognitive abilities and being obese are in general the most im-
portant determinants of these individual thresholds.

Figure 3 compares across the different model specifications the proportion of work
disabled respondents, according to the previous definition of individual work disability.

Without controlling for any individual characteristics (in other words, the unadjusted
measures), the rate of work disability is larger than 15%, overall. As soon as we con-
trol for some individual characteristics, the rates of work disabled respondents among
European elderly substantially reduce, so that they become lower than 10% considering
any model that allows for threshold variations (that is, correcting for DIF), as if all re-
spondents used the wave1 (2004/05) Italian thresholds. In the analysed sample, there are
no differences adopting a standard chopit model or the one that accounts for individual
heterogeneity in the thresholds. Moreover, there are some interesting differences on the
rates of work disability limitations taking into account sample selection and longitudinal
answers2.

2 While in Paccagnella (2011) sample selection originates when respondents complete the
CAPI interview, but do not fill in the paper and pencil vignette questionnaire, in this dataset
sample selection also involves attrition from one wave to another. At the same time, differently
from Angelini et al. (2011), vignette data collected in Greece and Sweden in wave2 (2006/07) are
available and hence included in the dataset.
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Figure 3. Comparing work disability rates among some European countries, using 
com-mon wave1 Italian thresholds.

6. Final discussion

Since its introduction ten years ago, the approach of the anchoring vignettes has
shown a steadily increase of interest in the literature. Vignettes have been collected
in several surveys and according to many domains. They have been applied success-
fully in many contexts to correct for differential item functioning and investigate the
role played by response scale heterogeneity across respondents in different countries or
socio-economic groups. The empirical application in this paper supports these findings.

Nevertheless, several authors suggest using vignettes with caution and, at the same
time, testing validity of their assumptions first, rather than simply assumed them. How-
ever, so far vignette assumptions can be tested only using additional assumptions or
restrictions to the chopit approach. Therefore, it cannot be fully known whether the vi-
gnette assumptions are rejected because they do not really hold or because the additional
test assumptions are not indeed valid.

What is the future of this approach?
The first line of research undoubtedly comprises vignette assumptions testing. The

research community needs some other instruments or methodologies to test their validity
and/or still more evidence against or in favour them, according to the parametric or non-
parametric adopted solutions or according to the domains of interest. As an example,
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health domains like mobility and cognitive functioning have been widely investigated
(providing mixed evidence), while socio-economic domains are checked to a less extent.
Moreover, many open questions require some answers yet. Among them, I would like
to prompt: Are vignette assumptions sensitive to the...

i) number of the available response categories?

ii) number of proposed vignette questions?

iii) order of the vignette questions (random or according to the severity of the problems
depicted in each vignette)?

iv) order of all questions (posing first self-evaluation and then vignette questions or
vice-versa)?

Strictly connected to the previous one, a second line of research should investigate
the issues related to the vignette writing. There is a general agreement that the process
of writing vignettes has important effects for measuring the concept of interest and pre-
venting from the rejection of the vignette assumptions. In his website on vignettes3,
Gary King even likens the process of writing vignettes to the process of testing a theory.

A third line of research has to be devoted to the improvement of the statistical solu-
tions able to work with vignette data, as suggested by van Soest and Voňková (2014):
the development of new extensions of the chopit model, allowing for more flexible para-
metric and semiparametric solutions (i.e. relaxing the linearity functional form in the
self-assessment equation); new ways to introduce individual unobserved heterogeneity
in the model specification; other hypotheses on the distributional form of the errors (i.e.
error terms could be heteroscedastic).

In the end, anchoring vignettes are sometimes seen as a tool to enhance cross-
national comparability only: differences in national cultures and/or in welfare, labour
market or health-care systems across countries can violate the validity of the vignette
assumptions. Actually, anchoring vignettes could be applied fruitfully to correct for dif-
ferences in reporting behaviour in two other contexts at least: i) in longitudinal analysis
(as in Angelini et al., 2011), where the within-person information can be exploited to
weaken the vignette assumptions; ii) in comparisons of socio-economic strata of some
populations, for a better adjustment of reporting heterogeneity with respect to socio-
demographic characteristics, like gender, age classes or education.

Acknowledgements: This research was partially supported by the University of Padua
(Italy) with grant CPDA121180 “Statistical and econometric approach to marketing:
applications and developments to customer satisfaction and market segmentation”.

3 http://gking.harvard.edu/vign
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Appendix A. Tables

Table 1. Parameter estimates of the baseline model.

Variable β γ1 γ2 γ3 γ4

Self-assessment equation
Germany 0.504*** - - - -

Sweden 0.284* - - - -
The Netherlands 0.197 - - - -

Spain 0.148 - - - -
France -0.038 - - - -
Greece -0.671*** - - - -

Belgium 0.296** - - - -
Female -0.460*** - - - -

Age: 55-59 -0.085 - - - -
Age: 60+ -0.045 - - - -

Middle education 0.004 - - - -
High Education -0.025 - - - -
Household size -0.243 - - - -

Overweight 0.144* - - - -
Obese 0.178* - - - -

Chronic diseases 0.513*** - - - -
Symptoms 0.439*** - - - -

Mobility limitat. 0.453*** - - - -
ADL 0.495*** - - - -

IADL 0.442*** - - - -
Grip strength -0.188*** - - - -

Depression 0.369*** - - - -
Ten words test -0.444* - - - -

Constant - -0.216 -0.114*** -0.330*** -0.277***
Vignette equation

Kevin 0.914***
Anthony 0.701**

Eve 1.307***
Female vignette -0.032

Significance levels: *** = 1% level; ** = 5% level; * = 10% level
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Table 2. Parameter estimates of the standard chopit model.

Variable β γ1 γ2 γ3 γ4

Self-assessment equation
Germany 0.595*** 0.068 -0.048 0.136 0.291*

Sweden -0.097 -0.208* -0.696*** -0.047 0.464***
The Netherlands 0.286* -0.035 0.387*** -0.142 0.103

Spain -0.044 -0.318*** 0.161 0.177* 0.812***
France 0.081 0.119 -0.109 0.156* 0.333**
Greece -0.670*** -0.003 -0.095 -0.027 0.171

Belgium 0.448*** 0.059 0.192** -0.004 0.374**
Female -0.422*** 0.001 0.133* -0.018 -0.137

Age: 55-59 -0.045 0.012 0.008 0.098* -0.099
Age: 60+ -0.029 0.003 -0.007 0.112* -0.008

Middle education 0.014 -0.002 0.016 0.056 -0.025
High Education -0.008 0.004 0.003 -0.002 -0.002
Household size -0.172 0.049 0.082 0.480** -0.160

Overweight 0.153 0.038 -0.080 0.007 -0.063
Obese 0.265** 0.157*** -0.133* -0.114* -0.193**

Chronic diseases 0.474*** -0.092* 0.091* 0.110** 0.071
Symptoms 0.424*** -0.078 0.155*** -0.048 0.182**

Mobility limitat. 0.509*** 0.096** -0.142*** 0.053 -0.001
ADL 0.507*** -0.043 0.122 -0.066 -0.061

IADL 0.405*** -0.151 0.139 0.081 -0.032
Grip strength -0.186*** -0.009 0.036 -0.013 -0.003

Depression 0.391*** 0.064 -0.129** 0.034 0.050
Ten words test -0.665** -0.334** 0.360** 0.190 0.028

Constant - -0.041 -0.560*** -0.613*** -0.386
Vignette equation

Kevin 0.890***
Anthony 0.665**

Eve 1.301***
Female vignette -0.040*

Significance levels: *** = 1% level; ** = 5% level; * = 10% level
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Table 3. Parameter estimates of the chopit with heterogeneity in thresholds model.

Variable β γ1 γ2 γ3 γ4

Self-assessment equation
Germany 0.599*** 0.104 -0.088 0.098 0.229

Sweden -0.094 -0.186 -0.666*** -0.085 0.403***
The Netherlands 0.272 -0.035 0.383*** -0.137 0.104

Spain 0.001 -0.264** 0.119 0.144 0.775***
France 0.063 0.111 -0.088 0.137 0.270*
Greece -0.700*** 0.003 -0.094 -0.041 0.123

Belgium 0.444*** 0.065 0.182* -0.015 0.330**
Female -0.417*** 0.006 0.119 -0.011 -0.121

Age: 55-59 -0.041 0.015 0.007 0.096* -0.097
Age: 60+ -0.030 -0.003 0.007 0.101* -0.013

Middle education 0.043 0.023 0.011 0.041 -0.034
High Education 0.006 0.011 -0.002 -0.011 0.004
Household size -0.194 0.027 0.090 0.520** -0.191

Overweight 0.162* 0.046 -0.090* 0.001 -0.041
Obese 0.245** 0.134** -0.119* -0.088 -0.165*

Chronic diseases 0.481*** -0.086 0.088 0.104** 0.060
Symptoms 0.429*** -0.070 0.137** -0.030 0.201**

Mobility limitat. 0.530*** 0.113*** -0.163*** 0.040 0.001
ADL 0.518*** 0.015 0.033 -0.044 -0.037

IADL 0.391*** -0.138 0.142 0.052 -0.031
Grip strength -0.191*** -0.016 0.044 -0.011 0.002

Depression 0.393*** 0.067 -0.123** 0.014 0.023
Ten words test -0.567** -0.281* 0.304* 0.199 -0.007

Constant - -0.020 -0.543*** -0.636*** -0.397*
Vignette equation

Kevin 0.957***
Anthony 0.740**

Eve 1.354***
Female vignette -0.046**

Significance levels: *** = 1% level; ** = 5% level; * = 10% level
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Table 4. Parameter estimates of the chopit with sample selection model.

Variable β γ1 γ2 γ3 γ4

Self-assessment equation
Germany 0.831*** 0.351*** -0.093 0.090 0.206

Sweden -0.079 -0.186 -0.670*** -0.116 0.358***
The Netherlands 0.300* -0.015 0.381*** -0.121 0.131

Spain 0.061 -0.182 0.125 0.137 0.796***
France 0.422** 0.486*** -0.092 0.132 0.274*
Greece -0.823*** -0.171* -0.091 -0.043 0.118

Belgium 0.470*** 0.085 0.191** -0.002 0.348**
Female -0.416*** 0.008 0.108 0.002 -0.118

Age: 55-59 -0.078 -0.022 -0.001 0.099* -0.096
Age: 60+ 0.067 0.109 -0.003 0.096 -0.017

Middle education 0.044 0.037 0.001 0.045 -0.032
High Education -0.074 -0.066 0.008 -0.010 0.002
Household size -0.143 0.073 0.080 0.532** -0.212

Overweight 0.199** 0.089 -0.078 -0.003 -0.048
Obese 0.248** 0.127* -0.115* -0.090 -0.183*

Chronic diseases 0.461*** -0.102* 0.082 0.105** 0.075
Symptoms 0.413*** -0.081 0.123** -0.027 0.216**

Mobility limitat. 0.495*** 0.083 -0.147*** 0.037 -0.002
ADL 0.576*** 0.082 0.042 -0.053 -0.033

IADL 0.414*** -0.108 0.121 0.041 -0.055
Grip strength -0.202*** -0.029 0.040 -0.009 0.004

Depression 0.378*** 0.048 -0.122** 0.013 0.007
Ten words test -0.682** -0.355** 0.334** 0.218 0.054

Constant - 0.025 -0.525*** -0.614*** -0.336
Selection equation

Germany -0.717*** - - - -
Sweden 0.034 - - - -

The Netherlands -0.013 - - - -
Spain -0.237** - - - -

France -1.064*** - - - -
Greece 0.610*** - - - -

Belgium -0.043 - - - -
Female 0.016 - - - -

Age: 55-59 0.132** - - - -
Age: 60+ -0.317*** - - - -

Middle education -0.085 - - - -
High Education 0.210*** - - - -
Household size -0.068 - - - -

Overweight -0.175*** - - - -
Obese 0.036 - - - -

Chronic diseases 0.074 - - - -
Symptoms 0.054 - - - -

Mobility limitat. 0.075 - - - -
ADL -0.187 - - - -

IADL 0.046 - - - -
Grip strength 0.043 - - - -

Depression 0.027 - - - -
Ten words test 0.181 - - - -

Female interviewer 0.139*** - - - -
Age interviewer 0.001 - - - -

Constant -0.480** - - - -
Vignette equation

Kevin 0.280
Anthony 0.038

Eve 0.579*
Female vignette -0.053***

Significance levels: *** = 1% level; ** = 5% level; * = 10% level
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Table 5. Parameter estimates of the longitudinal chopit model.

Variable β γ1 γ2 γ3 γ4

Self-assessment equation
Germany w1 0.800*** 0.105 -0.051 0.072 0.217

Sweden w1 -0.058 -0.193 -0.676*** -0.184 0.402***
The Netherlands w1 0.318 -0.053 0.396*** -0.186* 0.163

Spain w1 0.050 -0.327** 0.129 0.104 0.688***
France w1 0.138 0.220* -0.124 0.075 0.315**
Greece w1 -0.739*** 0.033 -0.093 -0.105 0.098

Belgium w1 0.551*** 0.077 0.207** -0.080 0.327**
Female w1 -0.329** 0.034 0.133** -0.059 -0.088

Age: 55-59 w1 -0.029 0.019 0.025 0.068 -0.070
Age: 60+ w1 -0.011 -0.046 0.028 0.057 0.063

Middle education w1 -0.020 -0.028 0.038 0.050 -0.047
High Education w1 -0.019 0.002 0.028 -0.004 0.013
Household size w1 -0.031 0.018 0.185 0.320 0.062

Overweight w1 0.217* 0.067 -0.082 -0.042 -0.055
Obese w1 0.336** 0.179** -0.079 -0.139** -0.171*

Chronic diseases w1 0.616*** -0.073 0.061 0.104** 0.115
Symptoms w1 0.556*** -0.054 0.102* -0.026 0.200**

Mobility limitat. w1 0.576*** 0.154** -0.127** 0.026 -0.014
ADL w1 0.500** 0.049 0.105 -0.153 -0.075

IADL w1 0.584*** -0.110 0.074 0.096 -0.058
Grip strength w1 -0.182*** -0.025 0.054** -0.030 0.018

Depression w1 0.358*** 0.003 -0.071 -0.008 0.051
Ten words test w1 -0.753** -0.503** 0.392** 0.107 0.128

Germany w2 0.373* -0.203 0.081 -0.077 0.825***
Sweden w2 0.131 0.012 -0.114 -0.316*** 0.369*

The Netherlands w2 0.083 -0.018 0.247*** 0.040 -0.007
Spain w2 -0.133 -0.045 -0.315*** -0.162* 0.148

France w2 -0.258 0.103 -0.021 -0.025 0.379*
Greece w2 -0.072 0.307*** -0.224*** -0.125 -0.268

Belgium w2 0.305 0.208* 0.101 -0.194** 0.442**
Female w2 -0.291** 0.061 0.071 -0.078 0.284**

Age: 55-59 w2 -0.356*** -0.170*** 0.033 -0.099* -0.156
Age: 60+ w2 -0.097 -0.191*** 0.133** -0.030 -0.100

Middle education w2 0.113 -0.027 0.159*** -0.080 -0.294**
High Education w2 0.079 0.151** -0.078 0.028 0.025
Household size w2 0.343 -0.411 0.212 0.747*** 1.229**

Overweight w2 -0.144 0.048 -0.112** 0.025 -0.087
Obese w2 0.065 0.077 -0.119* -0.059 -0.228*

Chronic diseases w2 0.440*** -0.001 0.040 -0.065 0.003
Symptoms w2 0.389*** -0.070 0.078 0.019 -0.198

Mobility limitat. w2 0.639*** 0.014 -0.041 0.070 0.089
ADL w2 0.589** -0.040 0.059 -0.021 -0.084

IADL w2 0.444** 0.140 -0.192** 0.021 0.163
Grip strength w2 -0.172*** -0.056* 0.051** -0.039 0.039

Depression w2 0.483*** 0.063 -0.054 0.063 -0.176
Ten words test w2 -0.180 -0.251 0.353** 0.228 -0.218

Constant - 0.362 -0.410*** -0.010 -0.294
Vignette equation

Kevin w1 1.563***
Anthony w1 1.250***

Eve w1 2.109***
Kevin w2 1.125***

Anthony w2 0.819**
Eve w2 1.599***

Female vignette -0.051*
Significance levels: *** = 1% level; ** = 5% level; * = 10% level
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Summary:

The paper focuses on the analysis of the performance of university students, with
reference to first year compulsory courses. The main goal is to compare the exams in
terms of difficulty, discrimination and use of the grades. Moreover, the paper aims at
assessing how student careers depend on student and course characteristics. The analysis
exploits an Item Response Theory approach where exams are treated as items, with a 2-
Parameter Logistic model for the probability to pass the exams and a Graded Response
Model for the ordinal items representing grades of passed exams. Course characteristics,
such as the average student rating on teacher’s clarity, directly affect the items, whereas
student characteristics, such as the type of high school, indirectly affect the items via
the latent ability, even if some direct effects are allowed by fitting a MIMIC model
with Differential Item Functioning. The analysis shows that IRT-MIMIC modelling is a
flexible and powerful tool giving insights into the peculiarities of the exams and the role
of course and student characteristics.

Keywords: 2PL model; academic performance; course evaluation; DIF; Graded Re-
sponse Model.



96 B. Bertaccini, Grilli and C. Rampichini96 B. Bertaccini and L. Grilli and C. Rampichini

1. Introduction

In this paper we analyse the careers of university students during the first year, fo-
cusing on compulsory courses. In particular, we consider the probability of passing the
exams and the grades obtained in passed exams.

The analysis refers to freshmen enrolled in academic year 2011/2012 at two degree 
programmes of the School of Economics of the University of Florence, namely Manage-
ment and Economics. For these students we consider exams of first year compulsory 
courses passed from January to December 2012.

The main goal of the paper is to compare the exams in terms of difficulty, discrimi-
nation and use of the grades. Moreover, the paper aims at assessing how student careers
depend on student and course characteristics. This is important for both student tutoring
and course organization.

The analysis exploits an Item Response Theory (IRT) approach where exams are
treated as items and the student ability is a latent variable. Course characteristics, such as
the average student rating on teacher’s clarity, directly affect the items, whereas student
characteristics, such as the type of high school, indirectly affect the items via the latent
ability (standard MIMIC model), even if some direct effects are allowed by fitting a
MIMIC model with Differential Item Functioning (DIF). We exploit two versions of this
model: first, we analyse the binary items for exams passed or not passed by specifying
the IRT part as a 2-Parameter Logistic (2PL) model; then, we analyse the ordinal items
for the grades of passed exams by specifying the IRT part as a Graded Response Model
(GRM).

Even if IRT-MIMIC modelling is a well-established method in Psychometrics, its
application in the analysis of student careers is unconventional and challenging. In this
regard, our analysis shows that IRT-MIMIC modelling is a flexible and powerful tool
giving insights into the peculiarities of the exams and the role of course and student
characteristics.

The paper is organized as follows. Section 2 describes the structure of the two degree
programmes under consideration and summarizes the collected data on student careers
and course evaluations. Section 3 outlines the model for passing the exams and the
model for the grades. Section 4 presents the results of the analysis, and Section 5 offers
some concluding remarks.

2. Data

The dataset for the analysis is obtained from the administrative archive on student
careers, which includes background characteristics and information on passed exams.
The dataset is then enriched with student ratings, which are anonymous and summarized
at the course level. The final dataset has one record for each of the 7 compulsory courses.
The number of students is 808, yielding 5656 records.
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Table 1. First year compulsory courses of the degree programmes in Economics (EC)
and Management (MG). University of Florence, A.Y. 2011/2012

Course Degree Credits n. of Enrolled Teacher’s Exam
prog. classes students clarity %passed Avg. score

Management EC, MG 9 4 808 8.28 53.8 25.84
Accounting EC, MG 9 3 808 8.75 53.1 23.33
Economics MG MG 6 2 368 6.04 32.6 24.69
Economics EC EC 9 2 440 7.87 17.5 23.65
History EC, MG 6 3 808 7.83 63.1 22.73
Private law EC, MG 9 3 808 7.79 17.2 23.81
Math MG MG 6 3 368 6.81 21.2 21.79
Math EC EC 9 2 440 7.62 28.4 23.62
Statistics EC, MG 9 4 808 8.14 34.2 23.54

The characteristics of the courses are summarized in Table 1. Five courses are com-
mon to the two degree programmes, whereas Mathematics and Economics differ be-
tween the two degree programmes in terms of both credits and content. All the courses
have parallel classes offered to groups of students defined by the first letter of the sur-
name; each class has its own teacher with corresponding student ratings, that are reg-
ularly collected to monitor course quality. The questionnaire on student satisfaction is
filled before taking the exam through a web system which first requires authentication
and then ensures anonymity. Students express ratings on a ten-point scale on several
aspects of the course, including the item “Teacher’s clarity” considered here. Table 1
reports the mean rating for each course, averaging over classes.

The last two columns of Table 1 report the percentage of enrolled students who
passed the exam within the end of the first year, and the average score for successful
students. A student is not forced to enroll in all the compulsory exams within the first
year, thus if an exam has not been passed, it can be that either the student did not enroll
or the student failed. Unfortunately, failures at the exams are not registered, thus it is not
possible to know the reason why an exam has not been passed.

Exams are scored with integer values ranging from 18 to 30, plus ‘30 with honors’,
which is scored 31 for the computation of the average.

3. Model specification

In order to analyse student careers, the exams of compulsory courses of the first year
are treated as a multivariate response. We carry out the analysis in two steps: (1) a
model for the probability to pass each exam; (2) a model for the probability to obtain
a given grade at each passed exam. In both steps, we view each course as an item of a
test in order to exploit IRT modelling (Baker and Kim 2004, Rijmen et al. 2003). In this
approach, the items of a student are correlated by means of a latent variable, that can be
interpreted as the student ability to pass the exam or to obtain a high grade.
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3.1. Model for passing the exams

Let Y P
in be a binary variable taking the value 1 if the exam of course i has been

passed (hence the superscript P ) by student n, i = 1, . . . , 9 and n = 1, . . . , 808. As
shown in Table 1, the offered courses are 9, but each student is enrolled only in 7 of
them, depending on her degree programme. The response model for the i-th course is:

logit[P (Y P
in = 1 | Xin, θ

P
n )] = αP

i + βPXin + λP
i θ

P
n (1)

where Xin is a vector of covariates with fixed effects βP , including characteristics of
the course and, possibly, course-student interactions. The parameter αP

i represents the
easiness of the course when Xin = 0. The latent variable θPn can be interpreted as the
student ability to pass his/her seven compulsory exams, with discrimination parameter
λP
i . The discrimination parameter of the first course (Management) is fixed to one for

identifiability, i.e. λP
1 = 1.

If covariates Xin are not included, model (1) reduces to a standard 2-parameter
logistic model (2PL).

In order to model the relationship between the ability to pass the exams and the
observed characteristics of the student, we specify the following structural model:

θPn = δPZn + εPn (2)

where Zn is a vector of student characteristics, with fixed effects δP . The residual terms
εPn are assumed to be independent with an identical normal distribution with zero mean
and standard deviation τP . Equations (1) and (2) define a MIMIC model (Jöreskog
and Goldberger 1975), belonging to the class of Generalized Linear Latent And Mixed
Model (Rabe-Hesketh et al. 2004a).

In the standard version, the MIMIC model assumes that student characteristics Zn

affect the probabilities to pass the exams only through the ability, i.e. Zn only have
indirect effects. However, it is interesting to investigate if Zn also have direct effects.
This can be done by including in Xin interaction terms among course indicators (dummy
variables) and some of the covariates in Zn. Those interactions can be interpreted as item
bias or differential item functioning (DIF, Rijmen et al. 2003).

The model defined by equations (1) and (2) is represented by the path diagram of
Figure 1: the mean rating of teacher’s clarity is included in the vector of covariates Xin

affecting the probabilities to pass exams; on the other hand, high school type (lyceum
vs others) and high school grade are included in the vector of covariates Zn influencing
student ability, with DIF for type of high school.

3.2. Model for exam grades

Exams are scored with integer values ranging from 18 to 30, plus ‘30 with hon-
ors’. The observed distribution of exam scores, reported in Figure 2, shows peaks at
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Figure 1. Path diagram of the IRT-MIMIC model (1) and (2), with DIF for ‘HS lyceum’.
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Figure 2. Exam scores of first year compulsory courses, degree programmes in Eco-
nomics (EC) and Management (MG), University of Florence, A.Y. 2011/2012

the extremes and an irregular use of the scale, e.g. the score 29 is rarely assigned. For
these reasons, a linear model would be markedly inappropriate, thus an ordinal response
model is required.

Let Y G
in be the grade for the exam of course i of student n, with Y G

in = c if the
student passed the exam with grade c (hence the superscript G). To avoid sparseness,
we define the exam grade by aggregating adjacent scores as reported in Table 2, so that
Y G
in is an ordinal variable with 7 categories.

The response Y G
in is not defined if the exam has not been passed, i.e. if Y P

in = 0,
thus the number of observations reduces to 2189 grades from 615 students (in fact, about
24% of the students did not pass any exam).

We specify a cumulative logit model, corresponding to an IRT Graded Response
Model (Samejima 1969). Since the ordinal variable has 7 categories, the model for the
i-th course (i = 1, . . . , 9) is defined by the following 6 equations:

logit[P (Y G
in ≤ c | Xin, θ

G
n )] = γG

ic −
(
βGXin + λG

i θ
G
n

)
, c = 1, . . . , 6 (3)

where γG
ic is the threshold for the c-th category and Xin is a vector of covariates with

fixed effects βG, including characteristics of the course and, possibly, course-student
interactions. Due to the minus before the linear predictor in equation (3), the latent
variable θGn can be interpreted as the student ability to achieve high grades, with dis-
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Table 2. Exams passed by grade. First year compulsory courses, degree programmes in
Economics and Management, University of Florence, A.Y. 2011/2012

Grade Score Freq. Percent Cum.
1 18 196 8.95 8.95
2 19− 21 453 20.69 29.65
3 22− 23 374 17.09 46.73
4 24− 25 427 19.51 66.24
5 26− 27 390 17.82 84.06
6 28− 29 187 8.54 92.60
7 30, 30 ‘with honors’ 162 7.40 100.00

Total exams passed 2189 100.00

crimination parameter λG
i . As in Sect. 3.1, the discrimination parameter λG

1 for the
first course (Management) is set to one for identifiability. In order to estimate all the
item-specific thresholds (six for each item), we omit the overall constant from the linear
predictor.

Similarly to the model for passing the exams of Sect. 3.1, we specify the following
structural model to account for the indirect effects of student characteristics:

θGn = δGZn + εGn (4)

where the vector of student characteristics Zn has fixed effects δG. The residual terms
εGn are assumed to be independent with an identical normal distribution with zero mean
and standard deviation τG. Equations (3) and (4) define a MIMIC model for the grades.

As discussed in Sect. 3.1, we can look for direct effects of student characteristics
(DIF) by including in the vector Xin interaction terms among course indicators (dummy
variables) and some of the covariates in Zn.

The path diagram of model (3) and (4) has the same structure of the IRT-MIMIC
model represented in Figure 1; the only difference is that the items are ordinal, thus the
response distribution is multinomial with cumulative logit link.

4. Results of the analysis

The models have been fitted using the gllamm command of Stata (Rabe-Hesketh et
al. 2004b), which performs Maximum Likelihood estimation with Adaptive Gaussian
Quadrature (we selected 8 quadrature points). To simplify the notation, from now on we
omit the superscript P or G in model parameters.

4.1. Results: model for passing the exams

Table 3 reports the estimates of four specifications of the IRT-MIMIC model defined
by equations (1) and (2) for the probabilities of passing compulsory exams.
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Table 3. Estimates of models for the probabilities of passing first year compulsory exams
(5656 exams, 808 students).

2PL MIMIC
Parameter standard covariates without DIF with DIF
Fixed effects
α1 Management 0.24 0.01 -0.21 -0.14
α2 Accounting 0.20 -0.09 -0.37 0.37
α3 Economics MG -2.21 ∗∗∗ -2.08 ∗∗∗ -2.40 ∗∗∗ -2.29 ∗∗∗
α4 Economics EC -4.01 ∗∗∗ -4.18 ∗∗∗ -4.60 ∗∗∗ -4.94 ∗∗∗
α5 History 0.82 ∗∗∗ 0.65 ∗∗∗ 0.46 ** 0.52 ∗∗∗
α6 Private law -2.66 ∗∗∗ -2.83 ∗∗∗ -3.07 ∗∗∗ -2.98 ∗∗∗
α7 Math MG -2.50 ∗∗∗ -2.46 ∗∗∗ -2.72 ∗∗∗ -3.15 ∗∗∗
α8 Math EC -1.39 ∗∗∗ -1.55 ∗∗∗ -1.82 ∗∗∗ -3.87 ∗∗∗
α9 Statistics -1.60 ∗∗∗ -1.82 ∗∗∗ -2.13 ∗∗∗ -2.35 ∗∗∗
β1 Teacher’s clarity 0.18 ∗ 0.19 ∗ 0.21 ∗
β2 Accounting×lyc -1.39 ∗∗∗
β3 Economics EC×lyc 1.35 ∗
β4 Math MG×lyc 1.01 ∗∗
β5 Math EC×lyc 3.34 ∗∗∗
β6 Stat×lyc 0.75 ∗∗
Discrimination
λ1 Management 1.00 fixed 1.00 fixed 1.00 fixed 1.00 fixed
λ2 Accounting 1.28 ∗∗∗ 1.28 ∗∗∗ 1.30 ∗∗∗ 1.70 ∗∗∗
λ3 Economics MG 1.63 ∗∗∗ 1.68 ∗∗∗ 1.75 ∗∗∗ 1.77 ∗∗∗
λ4 Economics EC 1.81 ∗∗∗ 1.82 ∗∗∗ 1.87 ∗∗∗ 1.76 ∗∗∗
λ5 History 0.79 ∗∗∗ 0.79 ∗∗∗ 0.78 ∗∗∗ 0.79 ∗∗∗
λ6 Private law 0.94 ∗∗∗ 0.95 ∗∗∗ 1.00 ∗∗∗ 0.99 ∗∗∗
λ7 Math MG 1.01 ∗∗∗ 1.02 ∗∗∗ 1.09 ∗∗∗ 1.05 ∗∗∗
λ8 Math EC 0.83 ∗∗∗ 0.84 ∗∗∗ 0.92 ∗∗∗ 1.14 ∗∗∗
λ9 Statistics 1.43 ∗∗∗ 1.45 ∗∗∗ 1.49 ∗∗∗ 1.44 ∗∗∗
Structural model
δ1 HS grade 0.10 ∗∗∗ 0.10 ∗∗∗
δ2 HS lyceum 1.31 ∗∗∗ 1.13 ∗∗∗
τ Ability SD 2.33 ∗∗∗ 2.32 ∗∗∗ 1.90 ∗∗∗ 1.92 ∗∗∗
n. of parameters 18.00 19.00 21.00 26.00
logL -2681.82 -2679.10 -2579.78 -2506.59
legend: * p < 0.05; ** p < 0.01; *** p < 0.001

We first consider the simple 2PL model without covariates. For a student with av-
erage ability, the easiest exam is History, and the hardest one is Economics EC. The
probability to pass an exam depends on the ability of the student through the discrimina-
tion parameter: for example, Statistics has estimated discrimination λ̂9 = 1.43, namely
for a given increase in the student ability, the logit of the probability of success increases
43% more for Statistics than for the reference course, i.e. Management (λ1 = 1). Figure
3 reports the item characteristic curves, describing how P (Yin = 1) depends on stu-
dent ability (in standard scale, i.e. θn/τ ): note that, due to different discriminations, the
ranking of the exams in terms of difficulty varies across the range of student ability.

The estimated standard deviation of student ability is large (τ̂ = 2.33). For exam-
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Figure 3. Standard 2PL item characteristic curves

ple, considering the exam of Statistics, a student with average ability (θn = 0) has a
probability of success equal to 17%, while if the ability increases by one standard devi-
ation (i.e., θn = 2.33) the probability of success becomes 85%, obtained by inverting
equation (1): 1/[1 + exp(−α̂9 − λ̂9θn)] = 1/[1 + exp(1.60 − 1.43 × 2.33)] = 0.85.
It is worth to note that the large value of the estimated standard deviation of the ability
is a consequence of the high percentage of students who did not pass any exam (24%).
Indeed, if those students are removed from the dataset, the estimated standard deviation
reduces to 1.05.

Column 2PL with cov. of Table 3 refers to the 2PL model including the average
student rating on teacher’s clarity, centered on the value 7, which is the integer closest to
the observed midrange. This covariate is specific for each teacher, so it takes a different
value for each class of the course. Its effect is significant and positive: the higher the
teacher’s clarity, the higher the probability to pass the exam. For example, considering
the exam of Statistics, a student with average ability has a probability of success equal
to 17% if the course has a mean rating of 7; this probability raises to 23% if the course
rating is 9, while it goes down to 12% if the course rating is 5.

The MIMIC models reported in Table 3 are designed to account for the effect of stu-
dent characteristics on the ability. High school grade (centered on the mid-point 80) and
high school type have significant effects: students with a better grade and coming from
a Lyceum have higher ability. The introduction of the two student covariates reduces the
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residual variance of the ability by 33%.
The last model is a MIMIC with DIF, showing that school type has also a direct 

effect on the probability of success for some of the courses: the better performance of 
students coming from Lyceum is attenuated for Accounting, and magnified for quantita-
tive courses, i.e. Economics EC, Math EC, Math MG and Statistics.

For example, let us consider a course with average student rating on teacher’s clarity
equal to 7, and a student with all covariates equal to zero (HS grade=80, HS type not
Lyceum) and having an average residual ability (εn = 0): for this student, the estimated
probability of passing the exam of Statistics equals 9%; if this student has a 10-point
increase in the HS grade (90 out of 100), the probability raises to 29%, whereas if the
student comes from a Lyceum (keeping HS grade at 80), the probability raises to 51%,
which is obtained as:

1

1 + e−(α̂9+β̂6+λ̂9δ̂2)
=

1

1 + e−(−2.35+0.75+1.44×1.13)
= 0.51 (5)

The total effect of Lyceum on the probability of passing Statistics, under the given con-
ditions, is 51% − 9% = 42%. This total effect is the sum of indirect effect and direct
effect (DIF). The indirect effect is obtained as 33% − 9% = 24%, where 33% is de-
rived from equation (5) without the interaction term (β̂6 = 0.75). The direct effect is
42%− 24% = 18%.

The direct effect (DIF) of Lyceum is significant for 5 exams, and it is positive for
all these exams, but Accounting. Indeed, with a similar computation as above, the total
effect of Lyceum on the probability of passing Accounting (12%) decomposes into a pos-
itive indirect effect (32%) and a negative direct effect (−20%). Therefore, the better per-
formance of students from a Lyceum is attenuated for Accounting, since their advantage
due to a higher overall ability is partially counterbalanced by a lack of subject-specific
background.

4.2. Results: model for exam grades

Table 4 reports the estimates of four specifications of the IRT-MIMIC model defined
by equations (3) and (4) for the grades of passed compulsory exams. The seven-point
grading scale is defined in Table 2. The item-specific intercepts have been omitted so
that all the item-specific thresholds can be estimated. Table 5 reports the estimated
thresholds for the first model (standard GRM); the estimated thresholds for the other
models are similar.

In order to facilitate comparisons, the parameters of the model for the grades (Table
4) are the same (apart from the intercepts) as those of the model for passing the exams
(Table 3), even if some effects are not significant. Note that the model for the grades is
fitted on a smaller set of students (615 instead of 808), since students who did not pass
any exam are automatically excluded.
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Table 4. Estimates of models for grades on first year compulsory exams (2189 exams,
615 students).

GRM MIMIC
Parameter standard covariates without DIF with DIF
Thresholds (6× 9) (see Tab.5) (not reported) (not reported) (not reported)
Fixed effects
β1 Teacher’s clarity -0.05 -0.03 -0.02
β2 Accounting×lyc -0.64 ∗
β3 Economics EC×lyc -0.45
β4 Math MG×lyc 0.76
β5 Math EC×lyc 0.20
β6 Stat×lyc 0.07
Discrimination
λ1 Management 1.00 fixed 1.00 fixed 1.00 fixed 1.00 fixed
λ2 Accounting 1.74 ∗∗∗ 1.72 ∗∗∗ 1.68 ∗∗∗ 1.88 ∗∗∗
λ4 Economics MG 1.52 ∗∗∗ 1.51 ∗∗∗ 1.67 ∗∗∗ 1.69 ∗∗∗
λ3 Economics EC 1.46 ∗∗ 1.45 ∗∗ 1.28 ∗∗ 1.38 ∗∗
λ5 History 0.97 ∗∗∗ 0.97 ∗∗∗ 1.19 ∗∗∗ 1.20 ∗∗∗
λ6 Private law 0.78 ∗∗ 0.77 ∗∗ 0.97 ∗∗∗ 0.95 ∗∗∗
λ8 Math MG 0.68 ∗ 0.68 ∗ 0.56 ∗ 0.62 ∗
λ7 Math EC 1.38 ∗∗∗ 1.35 ∗∗∗ 1.25 ∗∗∗ 1.31 ∗∗∗
λ9 Statistics 1.68 ∗∗∗ 1.66 ∗∗∗ 1.27 ∗∗∗ 1.32 ∗∗∗
Structural model
δ1 HS grade 0.06 ∗∗∗ 0.06 ∗∗∗
δ2 HS lyceum 0.57 ∗∗∗ 0.66 ∗∗∗
τ Ability SD 0.93 ∗∗∗ 0.93 ∗∗∗ 0.74 ∗∗∗ 0.72 ∗∗∗
n. of parameters 63 64 66 71
logL -3760.52 -3760.35 -3675.83 -3670.07
legend: * p < 0.05; ** p < 0.01; *** p < 0.001

The estimated discrimination parameters of the two models are in good agreement
(e.g. the correlation is 0.75 for the standard versions), which indicates that the implicit
grade corresponding to a failed examination is assigned in a way that is somewhat con-
sistent with the use of the grading scale for a successful examination.

The estimated standard deviation of the ability in the model for the grades (0.93) is
considerably lower than in the model for passing the exams (2.33). However, as noted
before, in the model for passing the exams the standard deviation of the ability reduces
to 1.05 if we omit students who did not pass any exam.

Interestingly, the course quality assessed through the average student ratings on
teacher’s clarity has a significant effect on the probability of passing the exams, but
not on the grades.

In the MIMIC part, the effects of Lyceum and HS grade and their contribution to the 
reduction of the residual variance of the ability (-37%) are similar to those of the 
model for passing the exams.

Only the interaction term (DIF) between Lyceum and Accounting is significant in
the model for the grades, with the same sign as in the model for passing the exams. The
other interaction terms are not significant, anyway note that in the model for the grades
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the sample sizes are substantially reduced (see Table 1).

Table 5. Estimated thresholds for standard GRM, grades on first year compulsory exams.

Item γ1i γ2i γ3i γ4i γ5i γ6i
Management -4.03 -2.20 -1.37 -0.49 0.99 2.19
Accounting -4.64 -0.99 0.39 1.99 3.52 4.44
Economics MG -3.63 -2.31 -0.15 1.04 2.67 4.50
Economics EC -2.55 0.07 0.56 1.43 2.86 4.21
History -1.61 -0.59 0.26 1.38 2.64 3.49
Private law -2.42 -0.87 -0.02 1.11 2.37 3.53
Math MG -0.72 0.60 1.22 1.73 2.87 3.50
Math EC -4.48 -0.32 0.47 1.51 2.48 3.52
Statistics -2.30 -0.43 0.42 1.45 2.38 3.27

The estimated thresholds in Table 5 convey information about how the grading scale
is used by teachers of compulsory exams, with reference to a student with average ability
(θn = 0). In general, the grade tends to be lower as the thresholds become larger. It is
worth to note that the estimated thresholds of the exams are not related by a simple shift,
thus there is evidence of a different use of the scale.

To convert the thresholds into probabilities, we exploit the following formula, de-
rived from model (3):

P (Yin = c | θn) = P (Yin ≤ c | θn)− P (Yin ≤ c− 1 | θn)

=
1

1 + e−(γic−λiθn)
− 1

1 + e−(γi,c−1−λiθn)

for c = 1, . . . , 7, posing P (Yin ≤ c − 1 | θn) = 0 if c = 1. For a student with average
ability (θn = 0) these probabilities depend only on the thresholds. Table 6 reports the
predicted probabilities P (Yin = c | θn = 0) using the estimated thresholds of Table 5.

Table 6. Estimated probabilities for standard GRM (student with average ability),
grades on first year compulsory exams.

P (Yin = c | θn = 0)
Item c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7
Management 0.02 0.08 0.10 0.18 0.35 0.17 0.10
Accounting 0.01 0.26 0.33 0.28 0.09 0.02 0.01
Economics MG 0.03 0.06 0.37 0.28 0.20 0.05 0.01
Economics EC 0.07 0.45 0.12 0.17 0.14 0.04 0.01
History 0.17 0.19 0.21 0.23 0.13 0.04 0.03
Private law 0.08 0.21 0.20 0.26 0.16 0.06 0.03
Math MG 0.33 0.32 0.13 0.08 0.10 0.02 0.03
Math EC 0.01 0.41 0.19 0.20 0.10 0.05 0.03
Statistics 0.09 0.30 0.21 0.21 0.11 0.05 0.04

The wide variability of the first threshold across exams in Table 5 reflects the hetero-
geneity in the use of the minimum grade, which is very common for Math MG (33%),



An IRT-MIMIC model for the analysis of university student careers 107An IRT-MIMIC model for the analysis of university student careers 107

but rare for Accounting (1%), as shown by Table 6. However, we cannot claim that the
grades at Accounting are generally higher than the grades at Math MG since grade 7 is
less likely for Accounting. In other words, the teachers of Accounting tend to rule out
extreme grades.

In order to compare grades across exams for a student with ability different from
the average, we can rely on item characteristic curves. Figure 4 reports, as a function
of the standardized ability θn/τ , the item characteristic curves for the probabilities to
get the following grades: the minimum grade (Y = 1 ↔ score = 18), a low grade
(Y ≤ 2 ↔ score ≤ 21), a high grade (Y ≥ 6 ↔ score ≥ 28), the maximum grade
(Y = 7 ↔ score = 30 or ‘30 with honors’). Due to exam-specific discriminations and
thresholds, the ranking of the exams in terms of the probability to get a given grade varies
across the range of student ability. For example, the probability of get the minimum
grade at Math MG is quite large across the whole range of ability, whereas at Statistics
the corresponding probability is very large for low ability and negligible for high ability.
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Figure 4. Standard GRM item characteristic curves for some probabilities

The MIMIC models reported in Table 4 allow to take into account the effect of stu-
dent characteristics on the ability. As for the model for passing the exams, high school
grade (centered on the mid-point 80) and high school type have significant effects: stu-
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dents with a better grade and coming from a Lyceum have higher ability. The last model
is a MIMIC with DIF, which is significant only for Accounting.

In order to illustrate how to interpret the MIMIC parameters, let us consider the
probability of getting a grade higher than 3 (i.e. a score ≥ 24, which is the mid-point
of the scale) for a course with average student rating on teacher’s clarity equal to 7,
and a student with all covariates equal to zero (HS grade= 80, HS type= not Lyceum).
Considering a student with average residual ability (εn = 0), the predicted probability of
getting a grade > 3 in Statistics is 32%; if this student has a 10-point increase in the HS
grade (90 out of 100), the probability raises to 49%, whereas if the student comes from
a Lyceum (keeping HS grade= 80), the probability raises to 55%. This probability is
obtained as one minus the cumulative probability for c = 3 given by inverting equation
(3):

1− 1

1 + e−[γ̂3,9−(β̂6+λ̂9δ̂2)]
= 1− 1

1 + e−[0.42−(0.07+1.32×0.66)]
= 0.55 (6)

Thus, for Statistics the total effect of Lyceum is 55%− 32% = 23% (considering a stu-
dent with HS grade=80). The interaction term β6 is not significant for Statistics; anyway,
as in the model for passing the exams, the total effect of Lyceum can be decomposed
into an indirect effect (21%) and a direct effect (2%).

5. Final Remarks

The paper considered the performance of students on compulsory first year exams at
the School of Economics and Management of the University of Florence. We first fitted
models for the probability of passing the exams and then models for the grades obtained
on passed exams.

All the models have an IRT structure in order to measure student ability alongside
with exam-specific difficulty and discrimination power. Moreover, we extended the
models with a structural part (MIMIC) to estimate the effects of student’s characteristics
(Lyceum and HS grade) on the abilities of passing the exams and obtaining a high grade.
The contribution of such characteristics is substantial, since the residual variance of the
ability reduces by about one third in both models. We also looked for direct effects of
these covariates by adding Differential Item Functioning (DIF): the better performance
of students from a Lyceum is attenuated for Accounting and magnified for quantitative
exams.

As regard course quality, assessed through the average student ratings on teacher’s
clarity, our analysis has found a significant effect on the probability of passing the exams,
but not on the grades. In other words, a better teacher is not associated with a better
performance of successful students, but with a higher success rate and this could help
to reduce the drop-out rate. The estimation of the effect of the average student ratings
is free from selection bias since students are assigned to classes depending on the first
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letter of the surname, even if there could be some bias due to non-response. However, it
is hard to reliably assess the impact of a specific intervention in the course organization
since the student ratings are a summary of a complex entity, thus the impact should be
evaluated through an experiment.

The grades are modelled through a Graded Response Model, which allows to under-
stand how the grading scale is used by the teachers and to carry out fair comparisons
among the exams, thus locating exams with an anomalous pattern (e.g. Math MG).

Our approach based on IRT-MIMIC models represents a noteworthy advance with 
respect to traditional approaches relying on a summary measure of student performance, 
such as the the number of passed exams, the number of gained credits or a proficiency 
indicator combining credits and grades (for a short review see Grilli et al., 2013). Indeed, 
IRT modelling gives insights into the peculiarities of the exams and the role of course 
and student characteristics. This information is valuable in order to design and imple-
ment policies to improve the degree programme organization and to tailor the student 
tutoring service.
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Summary: The Nonlinear CUB models have been recently introduced with the aim of
generalizing the standard CUB in the context of rating data modelling. In this paper the
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1. Introduction

Statistical analyses in several fields often deal with rating data, used to investigate
the individuals’ perceptions, attitudes, behaviours, cognitions. Rating data are usually
collected by means of a questionnaire involving categorical ordinal items, i.e. questions
whose possible responses are measured on an ordinal scale. In the literature, several
methods and techniques have been proposed to model rating data, taking into account
their categorical ordinal nature (see Agresti, 2010; Tutz, 2012). Among them, a different
paradigm is given by the CUB models (D’Elia and Piccolo, 2005; Piccolo, 2006; Pic-
colo and D’Elia, 2008; Iannario and Piccolo, 2012), introduced in 2003 with the name
MUB (Piccolo, 2003). Since then, the CUB models have been developed in several di-
rections and many papers concerning inferential issues, identifiability problems, fitting
measures, computational strategies and software routines have been published (Iannario,
2009, 2010, Iannario and Piccolo, 2010, 2012, 2014). In addition, the CUB models
have been extended in several directions, for example to consider subjects’ and objects’
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covariates (Iannario 2007, 2008; Piccolo, 2013), the so-called shelter effect, resulting
in a very high frequency on a given response category (Iannario, 2012a), the possible
presence of a hierarchical structure in the data (Iannario, 2012b), multimodal response
distributions deriving from a latent class structure (Grilli, Iannario, Piccolo and Rampi-
chini, 2013). The interest towards the CUB models has increased also from the point of
view of applications, because they can be used effectively in different contexts, for ex-
ample linguistics (Balirano and Corduas, 2008), risk analysis (Cerchiello, Iannario and
Piccolo, 2010), marketing (Iannario, Manisera, Piccolo e Zuccolotto, 2012), medicine
(D’Elia, 2008), sensometrics (Piccolo and D’Elia, 2008).

A possible generalization of the CUB models is the so-called Nonlinear CUB (NL-
CUB), a new class of models recently proposed in order to deal with the unequal spacing
of the response categories in the respondent’s mind (Manisera and Zuccolotto, 2014).
The unequal spacing of categories has been translated into the concept of nonlinearity,
defined as the presence of non-constant transition probabilities, i.e. the probabilities of
moving from one rating to the next one during a decision process where the expressed
rating derives from a step-by-step mechanism. NLCUB, differently from CUB, can be
used to model rating data with non-constant transition probabilities. Simulation studies
and real data analyses (Manisera and Zuccolotto, 2013, 2014) show promising results
that encourage further research.

The aim of this paper is to present some stylized facts concerning the NLCUB mod-
els, deriving from an extended systematic study performed in order to investigate their
behaviour. Based on the findings of this study, we draw some interesting conclusions on
the nonlinearity patterns expressed by different NLCUB models and useful suggestions
concerning their estimation procedure.

The paper is organized as follows: in Section 2 we describe the basic features of
the CUB and NLCUB models. In particular, the concept of transition probability is
defined in Subsection 2.2 and its formulation is derived for both CUB and NLCUB
models, while the parameter estimation procedure of NLCUB models is briefly recalled
in Subsection 2.3. In Section 3 we introduce the concepts of linearity and nonlinearity
of the decision process underlying the responses on a rating scale. Also, we propose a
nonlinearity index able to measure the degree of nonlinearity in the decision process. In
Section 4 the results of a wide systematic study are presented and summarized by some
stylized facts. Section 5 concludes the paper.

2. CUB and Nonlinear CUB models

The CUB models have been introduced in the literature to analyse ordinal data and
fit in the latent variable framework. With the CUB models, rating or ranking data are
modelled by a mixture of a Uniform and a Shifted Binomial random variables: the
observed rating r (r = 1, . . . ,m) is a realization of the discrete random variable R
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whose probability distribution is given by

Pr{R = r|θ} = πPr{V (m, ξ) = r}+ (1− π)P{U(m) = r} (1)

with r = 1, . . . ,m, θ = (π, ξ)′, π ∈ (0, 1], ξ ∈ [0, 1]. The number of possible response
categories m is a given and known integer. For a given m, V (m, ξ) is a Shifted Binomial
random variable, with trial parameter m and success probability 1 − ξ, modelling the
feeling component, and U(m) is a discrete Uniform random variable defined over the
support {1, . . . ,m}, aimed to model the uncertainty component. The CUB models are
identifiable for m > 3 (Iannario, 2010).

The Nonlinear CUB models (NLCUB), introduced by Manisera and Zuccolotto
(2014), are a generalization of the CUB models. In detail, with NLCUB the discrete
random variable R generating the observed rating r has a probability distribution de-
pending on a new parameter T , T ≥ m− 1 and given by

Pr{R = r|θ} = π
∑

y∈l−1(r)

Pr{V (T + 1, ξ) = y}+ (1− π)P{U(m) = r} (2)

where l is a function mapping from (1, . . . , T +1) into (1, . . . ,m). In detail, l is defined
as

l(y) =




1 if y ∈ [y11, . . . , yg11]
2 if y ∈ [y12, . . . , yg22]
...

...
...

m if y ∈ [y1m, . . . , ygmm]

(3)

where yhs is the h-th element of l−1(s), and

(y11, . . . , yg11, y12, . . . , yg22, . . . , y1m, . . . , ygmm) = (1, . . . , T + 1).

We denote with gs = |l−1(s)|, where | · | denotes the cardinality of a set, the number
of “latent” values to which rating s corresponds based on l. The values g1, . . . , gm
univocally determine the function l and can be considered as parameters of the model.
We have T = g1 + . . .+ gm − 1.

When T = m − 1 and gs = 1 for all s = 1, . . . ,m, then the proposed model
collapses into the standard CUB model.

2.1. The general framework for the decision process

In Manisera and Zuccolotto (2014) the NLCUB formulation is derived as a special
case of a more general framework, proposed to describe the decision process (DP) driv-
ing individuals’ responses to survey questions with ordered response levels. This general
model assumes the presence of two different approaches, which compose the DP and,



114 M. Manisera and P. Zuccolotto4 M. Manisera and P. Zuccolotto

borrowing the CUB terminology, are called feeling and uncertainty approach, respec-
tively. The feeling approach proceeds through T consecutive steps, called feeling path.
At each step, an elementary judgment is given. The rating of the feeling path results from
these elementary judgments that are, firstly, summarized and, secondly, transformed into
a Likert-scaled rating. The uncertainty approach consists of a random judgment that can
be given by the respondent due to the indecision in choosing the ordinal response, de-
pending on a great variety of possible reasons, e.g. unconscious willingness to delight
the interviewer, difficulty in evaluating some specific objects using limited information,
partial understanding, lack of self-confidence, laziness, boredom, etc. In the end, the
expressed rating can derive from the feeling or the uncertainty approach with given
probabilities. Some existing statistical models can be viewed as special cases of this
general framework.

The most interesting feature of this DP is the mechanism that, along the feeling path,
generates the rating according to the feeling approach. We address the reader to the
seminal paper on NLCUB models for a formal statistical description and two illustrative
examples that highlight the difference between the CUB and NLCUB models. Here we
limit ourselves to provide an intuitive explanation. First of all, the difference between the
DPs of NLCUB and CUB models only pertain the feeling approach. In both models, the
idea is that the elementary judgement given at each step of the feeling path can be viewed
as a quick and instinctive “Yes/no” response to a very simple question. For example,
when a respondent is asked to express his/her agreement with a certain statement by
using a Likert scale from 1 to m = 5, the simple question can be “Do I have a positive
sensation about this statement? Yes or no?”. The sequence of elementary judgements
obtained in the feeling path is a sequence of “Yes” and “No” responses that reflect the set
of positive and negative sensations that disorderly come to mind during the reasoning,
according to the individual’s experience about the latent trait being evaluated. The main
difference between CUB and NLCUB is that:

1. in the DP of CUB models, the number of steps in the feeling path (that is the
number of simple questions) is T = m − 1 = 4 and the last rating of the feeling
path is given by 1 plus the total number of “Yes” responses. This last rating
follows a Shifted Binomial distribution, since the basic judgments are realizations
of iid Bernoulli random variables;

2. in the DP of NLCUB models, the number of steps in the feeling path is T > m−1
and the last rating of the feeling path is still based on the total number of “Yes”
responses, but in an unbalanced way. As an example, we can have T = 9 and
the total number of “Yes” responses can be transformed into the last rating of the
feeling path by the rule represented in Table 1, which shows that, for example,
rating 2 is reached with one, two, three or four “Yes” responses and moving from
rating 1 to rating 2 is much more easier than moving from rating 2 to rating 3.

Then, in both CUB and NLCUB the final response can be either the rating deriving
from the feeling approach or a random rating resulting from the uncertainty approach,
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Table 1. DP of NLCUB models - Feeling approach (example with m = 5 and T = 9)

T = 9 (> m− 1) elementary judgments: “Positive sensation? Yes or no?”
Number of “Yes” responses 0 1 2 3 4 5 6 7 8 9

Corresponding rating 1 2 3 4 5

with probabilities π and 1 − π, respectively. It is easy to see that the expressed ratings
derived from the mechanism in 1. and in 2. follow distribution (1) and (2), respectively.
In particular, in (2) the asymmetric correspondence between the total number of “Yes”
responses and the rating of the feeling approach is accounted for by the function l and
the values gs, which denote the number of positive sensations needed to move to the
next rating (in the above example, g1 = 1, g2 = 4, g3 = 3, g4 = 1 and g5 = 1).

2.2. Transition probabilities for CUB and Nonlinear CUB

The way respondents achieve, moving through T steps, the formulation of a rating in
the feeling approach is called feeling path. The examples of DP considered in the previ-
ous section show that, in the end of the feeling path, the respondent (unconsciously) con-
siders the total number of “Yes” responses (i.e. the total number of positive sensations
that came into his/her mind) and decides which rating should be assigned, according to
some rule. As a matter of fact, we can imagine that the same reasoning is made at each
step of the feeling path. In other words, at each step (i.e. for each new basic judgment
he/she expresses), the respondent considers the number of “Yes” responses collected up
to that moment and formulates a provisional rating, which will be updated at the next
step, until the T -th step has been reached.

Within this framework, we can express the so-called transition probabilities ϕt(s),
i.e. the probability of moving to provisional rating s+1 at step t+1 of the feeling path,
given that the provisional rating at step t is s, s = 1, . . . ,m− 1. Transition probabilities
depend on the function l, i.e. on the rule according to which the respondents transform
the number of “Yes” responses into the rating during the feeling path. Therefore, transi-
tion probabilities describe the respondents’ state of mind about the response scale used
to express judgments in the feeling approach.

For ease of interpretation, the average transition probability ϕ(s), obtained averaging
ϕt(s) over t, is generally used. It indicates the “perceived closeness” between ratings s
and s+1 and can be transformed into a “perceived distance” δs = h(ϕ(s)) by means of a
proper function (usually δs = − log(ϕ(s))). These quantities are the basis for construct-
ing the so-called transition plot, useful to detect whether the ratings are perceived by
respondents as equally spaced or not. In the transition plot, a broken line joins the points
(s, ϕ̃(s−1)), s = 1, . . . ,m, ϕ̃(0) = 0, and ϕ̃(s−1) = (δ1+· · ·+δs−1)/(δ1+· · ·+δm−1)
for s = 2, . . . ,m. Figure 1 represents two examples of linear (left) and nonlinear (right)
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transition plot.
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Figure 1. Examples of linear (left) and nonlinear (right) transition plot (m = 5)

By construction, the y-axis in the transition plot ranges in [0, 1]. A linear transition
plot suggests that the ratings are perceived as equally-spaced in the respondents’ mind
(Figure 1, left) while a nonlinear transition plot accounts for unequally-spaced perceived
ratings (Figure 1, right).

Starting from the transition probabilities, we can also define the expected number µ
of one-rating-point increments during the feeling path and the unconditional probability
of increasing one rating point in one step of the feeling path ϕ = µ/T .

Manisera and Zuccolotto (2014) derive ϕt(s), ϕ(s), µ and ϕ for CUB and NLCUB
models. In the CUB models, the transition probabilities are constant over t, s and given
by

ϕt(s) = 1− ξ ∀t, s. (4)

with s = 1, . . . ,m − 1, t = 1, . . . ,m − 1 and ϕ0 = ϕ0(1) := 1 − ξ. In addition, we
also have ϕ = ϕt(s) = 1 − ξ and µ = (m − 1)(1 − ξ). In other words, in the CUB
models 1 − ξ, that is the feeling parameter, indicates the probability of increasing one
rating point in one step of the feeling path.

In the NLCUB models, the transition probabilities result

ϕt(s) = (1− ξ)

(
t

wgss

)
(1− ξ)wgssξt−wgss

gs∑
h=1

(
t

whs

)
(1− ξ)whsξt−whs

(5)
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where whs = yhs − 1 and with s = 1, . . . ,m − 1, w1s ≤ t < T , ϕ0 = ϕ0(1) := 0
if g1 > 1 and ϕ0 = ϕ0(1) := 1 − ξ if g1 = 1. When T = m − 1 and gs = 1 for all
s, formulas (4) and (5) coincide. In NLCUB, the expected number of one-rating-point
increments during the feeling path is given by

µ = ϕ0 + (1− ξ)
T−1∑
t=1

m−1∑
s=1

(
t

wgss

)
(1− ξ)wgssξt−wgss (6)

and 1 + µ is the expected rating of the feeling approach, without the effect of the uncer-
tainty approach.

2.3. Parameter estimation of the Nonlinear CUB models

In this paragraph we briefly recall the procedure proposed to estimate the parameters
of a NLCUB model. It’s worth pointing out that estimating a NLCUB model implies es-
timating both the parameters π, ξ and the parameters g1, . . . , gm describing the function
l. Therefore, the transition probabilities and the shape of the transition plot are estimated
from the data.

Given a random sample of n expressed ratings s = (s1, . . . , sn), the loglikelihood
function L of a NLCUB model for fixed g = (g1, . . . , gm) can be written as

L(ξ, π|g; s) =
n∑

i=1

log

{
π

[ gsi∑
h=1

(
T

whsi

)
(1− ξ)whsi ξT−whsi

]
+ (1− π)

1

m

}
(7)

with T = g1 + · · · + gm − 1. We obtain the estimates θ̂ = (ξ̂, π̂, ĝ) by the following
procedure:

• fix a maximum value Tmax for T ;

• considering all the possible configurations of g1, . . . , gm such that g1+· · ·+gm ≤
Tmax + 1, compute

ĝ = (ĝ1, . . . , ĝm) = argmax
g

{
max
ξ,π

L(ξ, π|g; s)
}
;

• maximize (7) with respect to ξ and π to get

ξ̂, π̂ = argmax
ξ,π

L(ξ, π|ĝ; s).

The number of possible configurations of g1, . . . , gm to be considered in the es-
timation procedure clearly depends on the values of m and Tmax. For example, for
m = 5 and Tmax = 8, 9, 10, 11 we have 126, 252, 462, 687 possible configurations of
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g1, . . . , gm, respectively. Estimation, along with other inferential issues, are the main
challenges of the NLCUB models and further research is being devoted to refine some
points, as discussed in Manisera and Zuccolotto (2014). With reference to the choice of
Tmax, which could appear discretionary, some considerations are discussed in Subsec-
tion 4.3 of this paper.

3. Linear and nonlinear decision processes

The decision process underlying the individuals’ responses on a rating scale has been
defined to be linear or nonlinear according to whether the transition probabilities ϕt(s)
are constant on non-constant for different t and s. This implies that, for linear processes,
the transition plot shows a straight line, since the probability of increasing one rating
point in the next step of the feeling path is constant for every rating in every step (as in
the example of Figure 1, left).

Manisera and Zuccolotto (2014) derive, under some general assumptions, a suffi-
cient condition for linearity and show that CUB (i) is a particular case of the general
framework and (ii) meets the sufficient condition for linearity. The NLCUB models,
instead, are a nonlinear variant of the general model and this is a reason for their name.
A graphical explanation is also possible, since the transition plot of the NLCUB models
generally shows a nonlinear broken line, giving interesting insights on the way the re-
spondents perceive the response scale and, in particular, the distance among the response
categories (as in the example of Figure 1, right).

Starting from the above definition of linearity, in this paper we propose to measure
the degree of nonlinearity expressed by a NLCUB model as the standard deviation of
the transition probabilities. Formally, we define the following nonlinearity index:

λ(ξ,g) = σ(ϕt(s))/max(σ) (8)

where σ(ϕt(s)) is the standard deviation of ϕt(s), ∀t, s ∈ Φ with Φ denoting the set
containing all the pairs (t, s) : ∃ ϕt(s). The value max(σ) can be obtained as follows.
Let |Φ| = k, where | · | denotes the cardinality of a set. For odd k, max(σ) is the
value of σ(ϕt(s)) in the extreme situation where k/2 probabilities ϕt(s) equal 0 and
the remaining k/2 probabilities equal 1; in this case with simple algebra we obtain
σ(ϕt(s)) =

√
1/2− 1/4 =

√
1/4. For even k, max(σ) is reached when either (k −

1)/2 probabilities ϕt(s) equal 0 and the remaining (k + 1)/2 probabilities equal 1 or
(k+1)/2 probabilities ϕt(s) equal 0 and the remaining (k− 1)/2 probabilities equal 1.
In these two cases we have σ(ϕt(s)) =

√
(k + 1)/2k − (k + 1)2/4k2 and σ(ϕt(s)) =√

(k − 1)/2k − (k − 1)2/4k2, respectively. In both cases we finally obtain σ(ϕt(s)) =√
1/4− 1/4k2). Therefore, we have

max(σ) =

{ √
1/4 if k is odd√
1/4− 1/4k2 if k is even

.
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The index λ(ξ,g) is normalized in [0,1] (or [0,100] if expressed in percentage) and
can be interpreted as the proportion of nonlinearity in the NLCUB model respect to its
maximum. The nonlinearity index λ is expressed as a function of (ξ,g) and does not
depend on π, because the transition probabilities only pertain the feeling approach.

4. Stylized facts

In this section, we empirically observe the statistical features of several different 
NLCUB models, obtained by varying the parameters in the parameter space so as to 
systematically explore a huge number of possible combinations. In the end, we draw 
some stylized facts considering the following issues:

• the extrapolation of some particular cases concerning the existence of linear DPs
within the NLCUB framework;

• the analysis of some evidence about the nonlinearity pattern of different NLCUB
models;

• the possibility to draw some remarks about the choice of Tmax for estimation
purposes.

In order to gain insights about these issues, we have computed the values of ϕt(s), ϕ(s)
(t = 1, 2, . . . , T − 1; s = 1, . . . ,m − 1) and µ for all the NLCUB models obtained
crossing the experimental conditions reported in Table 2 (altogether, 4,752 different
combinations of m, T , ξ). For each case, we have investigated all the possible con-
figurations of (g1, . . . , gm), so that a total number of 13,695,858 NLCUB models have
been considered in this systematic study.

Table 2. Experimental conditions

Parameter Explored values
m 4, 5, 6, 7
T m− 1,m,m+ 1, . . . , 3m− 1
ξ 0.01, 0.02, . . . , 0.98, 0.99

For illustrative purposes, we report the transition plots for 36 selected combinations
of m,T, ξ (Figures 2 - 5; for each case, all the combinations of (g1, . . . , gm)). At a
first sight we notice that (1) each combination seems to contain (at least) one linear
transition plot, (2) the shapes of the transition plots tend to become “more nonlinear”
with increasing values of T and decreasing values of ξ. These two rough remarks will
be more deeply analysed in the next three subsections.
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Figure 2. Transition plots for the cases with m = 4, T = 4, 5, 6 (top, middle, bottom),
ξ = 0.2, 0.5, 0.8 (left, middle, right)

4.1. Linear DPs within the NLCUB framework

Within the NLCUB framework, the sufficient condition for linearity in Manisera and
Zuccolotto (2014) is satisfied only by the configuration g1, . . . , gm = (1, . . . , 1), that is,
when the NLCUB collapses into a classical CUB model. However, we are aware that
other linear DPs may exist within the NLCUB framework, as the above mentioned con-
dition is not necessary. Our empirical investigation has found that, for each combination
of m and T , a linear DP is generated by the configuration of g1, . . . , gm such that gs = 1
with s = 1, . . . ,m − 1 and gm = T − m + 2, whatever the value of ξ. As for future
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Figure 3. Transition plots for the cases with m = 5, T = 5, 6, 7 (top, middle, bottom),
ξ = 0.2, 0.5, 0.8 (left, middle, right)

research, this constitutes a clear suggestion for trying to define a sufficient and necessary
condition. Although all these different DPs meet the definition of linearity, their feeling
paths work according to different mechanisms, so that the same values of ξ correspond
to different values of µ (see Figure 6). In detail, with high values of T , µ tends to remain
fixed at its highest value until ξ reaches a given threshold.



122 M. Manisera and P. Zuccolotto12 M. Manisera and P. Zuccolotto

m = 6, T = 6, ξ = 0.2

ratings

pe
rc

ei
ve

d 
ra

tin
gs

1 2 3 4 5 6

m = 6, T = 6, ξ = 0.5

ratings

pe
rc

ei
ve

d 
ra

tin
gs

1 2 3 4 5 6

m = 6, T = 6, ξ = 0.8

ratings

pe
rc

ei
ve

d 
ra

tin
gs

1 2 3 4 5 6

m = 6, T = 7, ξ = 0.2

ratings

pe
rc

ei
ve

d 
ra

tin
gs

1 2 3 4 5 6

m = 6, T = 7, ξ = 0.5

ratings

pe
rc

ei
ve

d 
ra

tin
gs

1 2 3 4 5 6

m = 6, T = 7, ξ = 0.8

ratings

pe
rc

ei
ve

d 
ra

tin
gs

1 2 3 4 5 6

m = 6, T = 8, ξ = 0.2

ratings

pe
rc

ei
ve

d 
ra

tin
gs

1 2 3 4 5 6

m = 6, T = 8, ξ = 0.5

ratings

pe
rc

ei
ve

d 
ra

tin
gs

1 2 3 4 5 6

m = 6, T = 8, ξ = 0.8

ratings

pe
rc

ei
ve

d 
ra

tin
gs

1 2 3 4 5 6

Figure 4. Transition plots for the cases with m = 6, T = 6, 7, 8 (top, middle, bottom),
ξ = 0.2, 0.5, 0.8 (left, middle, right)

4.2. Empirical evidence about nonlinearity

In this subsection we explore the relationships between the nonlinearity index λ(ξ,g)
and the parameters ξ and T . Figure 7 shows the overall plot of λ(ξ,g) versus ξ and the
corresponding partial plots for some selected values of T , with m = 4, the remaining
three cases (m = 5, 6, 7) being substantially similar.

The graphs clearly show that the highest levels of nonlinearity can be reached with
low values of ξ, provided that T is large enough (from T = 7 onwards, in this case)
and that higher values of T allow λ(ξ,g) to cover a wider range of values. The linear
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Figure 5. Transition plots for the cases with m = 7, T = 7, 8, 9 (top, middle, bottom),
ξ = 0.2, 0.5, 0.8 (left, middle, right)

correlation between λ(ξ,g) and ξ results −0.9206, −0.9529, −0.9664, −0.9754 for
m = 4, 5, 6, 7, respectively. The relationship between λ(ξ,g) and T can be evaluated
by inspecting the boxplots in Figure 8, showing that when m increases, we need higher
and higher values of T to reach the maximum level of nonlinearity. On the other hand,
the median values of λ(ξ,g) seem to increase very slowly after the first values of T .
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m = 4, 5, 6, 7

4.3. Remarks about the choice of Tmax

The estimation procedure for the NLCUB models requires the definition of the max-
imum value Tmax of T . This choice is rather crucial as high values of T may cause both
identifiability and overfitting problems (Manisera and Zuccolotto, 2014), which can be
kept under control by forcing T within a given range. The choice of a relatively small
value for Tmax is also justified from the point of view of the unconscious DP, since the
commitment of respondents in formulating judgments is generally moderate, so it is rea-
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Figure 8. Boxplots of λ(ξ,g) given T for m = 4, 5, 6, 7

sonable to assume a limited number of steps in the feeling path, whatever the complexity
of the evaluated item.

The results of the systematic analysis carried out in this work can provide some
useful suggestions about the choice of Tmax. In summary, we have to balance two
opposite needs:

• to define a model with flexibility enough to reproduce several nonlinear patterns:
this requires to fix a high value for Tmax, which allows the nonlinearity index
λ(ξ,g) to cover a wider range of values, as pointed out in Subsection 4.2;

• to pay attention on identifiability and overfitting problems: this requires to fix a
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low value for Tmax.
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Figure 9. Increments in the average of λ(ξ,g) given T , when moving from T − 1 to T ,
for m = 4, 5, 6, 7

Figure 9 shows how the average of λ(ξ,g) given T increases when moving from
T − 1 to T . We immediately note that the increments tend to be negligible after the
first values of T . We feel that a good balance between the above mentioned opposite
needs can be found when Tmax approximately equals 2m. In addition, if we establish
that NLCUB models should be flexible enough to guarantee a nonlinearity index with
an acceptably large range (from 0 to, at least, 85-95%) for varying m, Tmax = 2m− 1
seems preferable (Table 3). Being aware that the choice of Tmax is, to a certain extent,
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discretionary, we are convinced that Tmax could be conveniently be set at 2m − 1.
This corresponds to select a Shifted Binomial random variable with twice the categories
of the response scale. Additionally, although the estimation procedure of the NLCUB
model is fairly not time-consuming, this choice allows to keep the number of possible
configurations of g1, . . . , gm reasonably low, so reducing computational time.

Table 3. Values of the nonlinearity index (in %) for some m and T ; only the values in
[85%,95%] are displayed

T m = 4 m = 5 m = 6 m = 7
2m− 3 85
2m− 2 93 89 85
2m− 1 95 93 89 85
2m 95 91 88

2m+ 1 93 90
2m+ 2 94 92
2m+ 3 95 93
2m+ 4 94
2m+ 5 95
2m+ 6 95

5. Conclusions

In this paper we have presented a systematic analysis of some main features of the
Nonlinear CUB models (NLCUB), aimed at giving insights on the behaviour of this new
class of models and suggestions about the future theoretical developments.

In detail, we have explored three issues, concerned with (1) the existence of linear
DPs within the NLCUB framework, (2) the nonlinearity patterns expressed by different
NLCUB models, (3) the choice of the value Tmax in the estimation procedure.

The computational method exploited in this study was not, as usual, simulation.
In fact, we have derived the theoretical statistical features of all the NLCUB models
obtained by varying the parameters values, so that over 13 millions different models
have been included in the analysis.

About point (1), we have demonstrated that the CUB case is not the unique linear
DP within the NLCUB framework, thus confirming the need of devoting future research
to the definition of a sufficient and necessary condition for linearity, whose possible
formulation can be conjectured relying on the presented empirical evidences.

Points (2) and (3) are strictly connected each other. In fact, we have found that both
the parameters T and ξ play an important role in the nonlinearity pattern of the NLCUB
models. This evidence, although being of limited importance with reference to ξ, whose
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parameter space is restricted to [0, 1], is very meaningful for what concerns T . It is then 
able to give some suggestions about the choice of Tmax in the estimation procedure (at 
least for the explored values of m, which are, however, the most common ones in real 
situations).

Starting from this systematic study, future research can be devoted to derive a 
theo-retical formalization of the obtained empirical evidence.
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Summary: The generalized linear exponential cluster-weighted model is a recent mixture-
based approach which allows for flexible clustering and distribution estimation of a bi-
variate random vector composed by a response and by a covariate, regardless from the
support of these variables. Examples concern a count response and a covariate taking
values on the positive real line. With respect to the exponential-exponential latent class
model, which is based on the assumption of local independence, the present approach
assumes that, in each mixture component, there is a (generalized) linear dependence of
the response given the covariate. Since the two models can be considered as nested, in
this paper the BIC will be adopted to select the best assumption for data at hand. The
procedure is illustrated through an application to real data from a survey on fair-trade
coffee consumers interviewed at stores.

Keywords: Cluster-weighted models; Generalized linear models; Local independence;
Mixture models with random covariates; Model-based clustering; Mixed-type data.

1. Introduction

Finite mixture models are commonly employed in statistical modeling with two dif-
ferent purposes (Titterington et al., 1985, pp. 2–3). In indirect applications, they are
used as semiparametric competitors of nonparametric density estimation techniques (see
Titterington et al., 1985, pp. 28–29, McLachlan and Peel, 2000, p. 8 and Escobar and
West, 1995). On the other hand, in direct applications, finite mixture models are con-
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sidered as a powerful device for clustering, classification, and discriminant analysis, by
assuming that each mixture component represents a group (or cluster) in the original data
(see Fraley and Raftery, 1998 and McLachlan and Basford, 1988). The areas of applica-
tion of mixture models is huge and range from biology and medicine (see Schlattmann,
2009) to economics and marketing (see Wedel and Kamakura, 2001); an overview is
given in McLachlan and Peel (2000) and Frühwirth-Schnatter (2006).

The framework is represented by data arising from a bivariate random vector (X,Y )
′,

taking value on a subset of IR × IR and having joint distribution p (x, y), where Y is
the response variable and X is the (random) covariate. The family of mixture models
with random covariates (see, e.g., Hennig, 2000), to which the cluster-weighted model
(CWM; Gershenfeld 1997) belongs, constitutes a flexible frame to analyze such data.
In particular, the CWM factorizes p (x, y), in each mixture component, into the product
between the conditional distribution of Y |X = x and the marginal distribution of X by
assuming a parametric functional dependence for E (Y |x). Some recent works about
the CWM can be found in Ingrassia et al. (2012, 2014), Punzo (2014), and Subedi et al.
(2013).

This paper focuses on the generalized linear exponential CWM (GLECWM; Punzo
and Ingrassia, 2013) which considers an exponential family distribution for both Y |x and
X in each mixture component. This implies the possibility to jointly model two variables
defined on different supports such as, for example, a count response (via a Poisson
distribution) and a strictly positive covariate (by a gamma density). Furthermore, since
in regression terms the exponential family is strictly related to the generalized linear
models, this means that the functional relationship for E (Y |x) within each mixture
component is modeled by a generalized linear model. Hence, the resulting approach is
based on the assumption of local (generalized) linear dependence of Y on x. As a special
case, when the component slopes are assumed to be null, the exponential-exponential
latent class model (EELCM; Punzo and Ingrassia, 2013) is obtained. The EELCM fits
p (x, y) by a mixture in which each component joint distribution is factorized as the
product of the univariate exponential family distributions chosen for X and Y . Thus,
the EELCM is based on the stronger assumption of local independence (see Vermunt
and Magidson, 2002 and Hennig and Liao, 2013).

By considering the Bayesian information criterion (BIC; Schwarz, 1978), the idea
of the present paper is to evaluate if for (heterogeneous) data at hand the assumption of
local independence (as induced by the EELCM), with respect to the weaker assumption
of local (generalized) linear dependence (as induced by the GLECWM), is too strong.

The paper is organized as follows. In Section 2, the GLECWM is summarized.
In Section 3, the EM algorithm for maximum likelihood parameters estimation is de-
scribed (see also Section 4 for computational details). The BIC is recalled in Section 5
and, based on a real data set, the BIC-based approach above outlined is illustrated in
Section 6. Finally, discussion and suggestions for further work are presented in Sec-
tion 7.
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2. Genesis and formulation of the model

2.1. The cluster-weighted model

Let

p (x, y;ψ) =
k∑

j=1

πjp
(
x, y; ξj

)
(2.1)

be the finite mixture of distributions, with k components, used to estimate p (x, y). In
(2.1), p

(
x, y; ξj

)
is the parametric distribution (with respect to ξj) associated with the

jth component, πj is the weight of the jth component, with πj > 0 and
∑k

j=1 πj = 1,
and ψ =

(
π′, ξ′

)′, with π = (π1, . . . , πk)
′ and ξ = (ξ1, . . . , ξk)

′, contains all of the
unknown parameters of the mixture. Model (2.1) implicitly assumes that the component
joint distributions belong to the same parametric family. The mixture model (2.1) is
called a CWM when:

• for each j, there is a parametric function

E
(
Y |x, j;βj

)
= µY |j

(
x;βj

)

relating the expected value of the response Y to the covariate, where βj are re-
gression parameters.

• the jth component joint distribution is factorized as

p
(
x, y; ξj

)
= p

(
y|x; ξY |j

)
p
(
x; ξX|j

)
,

where ξj =
{
ξX|j , ξY |j

}
, with ξY |j containing βj .

Hence, the CWM has the form

p (x, y;ψ) =
k∑

j=1

πjp
(
y|x; ξY |j

)
p
(
x; ξX|j

)
. (2.2)

2.2. Exponential family and “link” with generalized linear models

A random variable Z is in the exponential family if it has density function p (z) of
the form

p (z; θ, φ) = exp

{
zθ − b (θ)

a (φ)
+ c (z;φ)

}
, (2.3)

for specific functions a (·), b (·) and c (·). In particular, if φ is known, this is an exponen-
tial family with canonical parameter θ which is function of the location parameter of the
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distribution. It may or may not be a two-parameter exponential family if φ is unknown.
The function b (·) is of special importance because it describes the relationship between
the mean value and the variance in the distribution (see, e.g., McCullagh and Nelder,
1989, pp. 28–29). Moreover, E (Z) = µ = b′ (θ) and V ar (Z) = b′′ (θ) a (φ), where
primes denote differentiation with respect to θ. The parameter φ is called the disper-
sion parameter and b′′ (θ) is called the variance function. The variance function is often
written as V (µ) = b′′ (θ), where the notation V (µ) does not mean “the variance of µ”;
rather, V (µ) indicates how the variance depends on µ in the distribution, and µ is in
turn a function of θ (see also Olsson, 2002, pp. 37–40).

It is well known that (2.3) is strictly related to the generalized linear models. Here, a
monotone and differentiable link function g (·) is introduced which relates the expected
value µ, of the response Z, to the covariate X through the relation

g (µ;β) = η = β0 + β1x. (2.4)

In (2.4), for simplicity, we consider β = (β0, β1)
′. Since the interest is now in the

parameters β, the distribution of Z given x will be denoted by p (z|x;β, φ). The choice
of the link function depends on the type of data. However, certain link functions are,
in some sense, “natural” for certain distributions and they are called canonical links.
In particular, the canonical link is the function g (·) such that g (µ;β) = θ. Table 1
summarizes all the quantities discussed so far for a few well-known distributions in
the exponential family. It should be noted, however, that there is no guarantee that the
canonical links will always provide the “best” model for a given set of data. In any
particular application the data may exhibit peculiar behavior, or there may be theoretical
justification for choosing links other than the canonical ones. For example, in the case of
the gamma distribution, the domain of the canonical link function is not the same as the
permitted range of the mean. In particular, the linear predictor may be negative, which
would give an impossible negative mean. When maximizing the likelihood, precautions
must be taken to avoid this. An alternative is to use a noncanonical link function like the
“log”.

Table 1. Characteristics of some common distributions in the exponential family

Gaussian gamma Poisson binomial

Notation N
(
µ, σ2

)
G (µ, ν) P (µ) B (m, p) /m

Support of Z (−∞,∞) (0,∞) {0, 1, . . .} {0/m, 1/m, . . . ,m/m}
a (φ) σ2 ν−1 1 1/m
b (·) θ2/2 − ln (−θ) exp (θ) ln [1 + exp (θ)]

c (z;φ) −
1

2

[
z2

φ
+ ln (2πφ)

]
ν ln (νz)− ln (z)− ln [Γ (ν)] − ln (z!) ln

(
m

mz

)

µ (θ) θ −θ−1 exp (θ)
exp (θ)

1 + exp (θ)
Canonical link identity µ−1 log logit
V ar (Z) σ2 µ2/ν µ p (1− p) /m
V (µ) 1 µ2 µ µ (1− µ)
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2.3. The generalized linear exponential CWM

Consider the general formulation of a CWM in (2.2) and assume that i) the distri-
bution of X , given the component j, is within the exponential family (2.3), and ii) a
generalized linear model for Y on x for each j. Thus we obtain the model

p (x, y;ψ) =

k�
j=1

πjp
�
y
��x;βj , φY |j

�
p
�
x; θX|j , φX|j

�
, (2.5)

which will be referred to as the generalized linear exponential CWM. With respect
to model (2.2) we have: ξY |j =

�
β′
j , φY |j

�′ and ξX|j =
�
θX|j , φX|j

�′, with ξY =�
ξ′Y |1, . . . , ξ

′
Y |k

�′

and ξX =
�
ξ′X|1, . . . , ξ

′
X|k

�′

. Note that the number of free param-
eters in (2.5) naturally depends on the exponential family distributions adopted. Suf-
ficient conditions for the identifiability of model (2.5), under the the four distributions
(binomial, Poisson, gamma, and Gaussian) of Table 1, are given in Punzo and Ingrassia
(2013). Roughly speaking, the model is identifiable when the related mixture of gen-
eralized linear models is identifiable. In addition, if a binomial distribution is used for
Y |x (X) in each mixture component, then we have also to require that k ≤ (mY + 1) /2
(k ≤ (mX + 1) /2), where mY (mX ) is the maximum value the binomial distribution
for Y |x (X) can assume.

If we assume in (2.5) that β11 = · · · = β1k = 0 (local independence), then the
exponential-exponential latent class model (EELCM; Punzo and Ingrassia, 2013), of
equation

p
�
x, y;π, ξX ,�ξY

�
=

k�
j=1

πjp
�
y; θY |j , φY |j

�
p
�
x; θX|j , φX|j

�
, (2.6)

is obtained. In (2.6), it results �ξY |j =
�
θY |j , φY |j

�′ and �ξY =
��ξ′Y |1, . . . ,

�ξ′Y |k

�′

.
Hence, given a value for k, model (2.6) is nested in model (2.5).

3. The EM algorithm for maximum likelihood estimation

Given n observed pairs (x1, y1)
′
, . . . , (xn, yn)

′ from (X,Y )
′, the observed-data

log-likelihood for the generalized linear exponential CWM, when k is supposed to be
pre-assigned, can be written as

l (ψ) =

n�
i=1

ln




k�
j=1

πjp
�
yi
��xi;βj , φY |j

�
p
�
xi; θX|j , φX|j

�

 .

The EM algorithm (Dempster et al., 1977) can be used to maximize l (ψ) in order to find
maximum likelihood (ML) estimates for the d unknown parameters of the GLECWM.
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Once k is assigned, the EM algorithm basically takes into account the complete-data
log-likelihood

lc (ψ) =

n∑
i=1

k∑
j=1

zij ln (πj) +

n∑
i=1

k∑
j=1

zij ln
[
p
(
yi
∣∣xi;βj , φY |j

)]

+

n∑
i=1

k∑
j=1

zij ln
[
p
(
xi; θX|j , φX|j

)]
, (3.1)

where zij = 1 if (xi, yi)
′ comes from component j and zij = 0 otherwise. The E and

M steps of the algorithm can be detailed as follows.

3.1. E-step

The E-step, on the (q + 1)th iteration (q = 0, 1, . . .), requires the calculation of the
expectation of lc (ψ) given the observed data (x1, y1)

′
, . . . , (xn, yn)

′ and given also the
provisional estimate ψ(q), of ψ, arising from the previous M-step. As lc (ψ) is linear
in the unobservable data zij , the E-step simply requires the calculation of the current
conditional expectation of Zij given the observed sample, where Zij is the random
variable corresponding to zij . In particular, for i = 1, . . . , n and j = 1, . . . , k, it follows
that

Eψ(q)

[
Zij

∣∣(xi, yi)
′ ]

= τ
(q)
ij =

π
(q)
j p

(
yi

∣∣∣xi;β
(q)
j , φ

(q)
Y |j

)
p
(
xi; θ

(q)
X|j , φ

(q)
X|j

)

p
(
xi, yi;ψ

(q)
) , (3.2)

which corresponds to the posterior probability that the unlabeled observation (xi, yi)
′

belongs to the jth component of the mixture, using the current fit ψ(q) for ψ.

3.2. M-step

In the M-step, on the (q + 1)th iteration (q = 0, 1, . . .), to maximize the expectation
of lc with respect to ψ, the values zij in (3.1) are simply replaced by their current
expectations τ (q)ij obtained in (3.2). This leads to

E [lc (ψ)] =
n∑

i=1

k∑
j=1

τ
(q)
ij ln (πj) +

n∑
i=1

k∑
j=1

τ
(q)
ij ln

[
p
(
yi
∣∣xi;βj , φY |j

)]

+

n∑
i=1

k∑
j=1

τ
(q)
ij ln

[
p
(
xi; θX|j , φX|j

)]
. (3.3)
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Since the three terms on the right-hand side have zero cross-derivatives, they can be
maximized separately. Let us set π = (π1, . . . , πk)

′, β =
�
β′
1, . . . ,β

′
k

�′, φY =�
φY |1, . . . , φY |k

�′, θX =
�
θX|1, . . . , θX|k

�′ and φX =
�
φX|1, . . . , φX|k

�′. The maxi-
mum of equation (3.3) with respect to π, subject to the constraints on those parameters,
is obtained by maximizing the augmented function

n�
i=1

k�
j=1

τ
(q)
ij ln (πj)− λ




k�
j=1

πj − 1


 , (3.4)

where λ is a Lagrangian multiplier. Setting the derivative of equation (3.4) with respect
to πj equal to zero and solving for πj yields

π
(q+1)
j =

n�
i=1

τ
(q)
ij

�
n, j = 1, . . . , k.

Maximizing (3.3) with respect to β (and, eventually, to φY ) is equivalent to inde-
pendently maximizing each of the k expressions

l(Y,j)c =
n�

i=1

τ
(q)
ij ln

�
p
�
yi
��xi;βj , φY |j

��
, j = 1, . . . , k. (3.5)

The maximization of (3.5) is equivalent to the maximization problem of the generalized
linear model (for the complete data), except that each observation (xi, yi)

′ contributes to
the log-likelihood for each component with a known weight τ (q)ij . Maximization of (3.5),
with respect to βj (and, eventually, to φY |j if the adopted distribution is not fixed in the
exponential family) can be carried out numerically; details can be found in Wedel and
DeSarbo (1995) and Wedel and Kamakura (2001, pp. 120–124) since the GLECWM
shares this part of complete-data log-likelihood with the finite mixture of generalized
linear models discussed in these references.

Finally, maximizing (3.3) with respect to θX (and, eventually, to φX ) is equivalent
to independently maximizing each of the k expressions

l(X,j)
c =

n�
i=1

τ
(q)
ij ln

�
p
�
xi; θX|j , φX|j

��
, j = 1, . . . , k. (3.6)

The maximization of (3.6) is equivalent to the maximization problem of the exponen-
tial family (for the complete data), except that each observation xi contributes to the
log-likelihood for each component with a known weight τ (q)ij , which is obtained in the
preceding E-step. Maximization of (3.6), with respect to θX|j (and, eventually, to φX|j)
can be carried out, as before, numerically.
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3.3. Classification of units

In the framework of model-based clustering, the fitted model can be used to classify
the n observations via the maximum a posteriori (MAP) classification induced by the
final estimates (denoted, as usual, by hats)

MAP (τ̂ij) =

{
1 if maxh {τ̂ih} occurs at component j
0 otherwise , (3.7)

i = 1, . . . , n and j = 1, . . . , k. Note that the MAP classification will be used in the
analyses of Section 6.

4. Computational issues

Code for the EM algorithm described in Section 3 is written in the R computing
environment (R Core Team, 2013), and it is available at http://www.dei.unict.it/
punzo. In its actual version, the algorithm considers the simple four distributions in
Table 1; they are able to cover four different data supports, as highlighted in the second
row of Table 1. Hence, we obtain sixteen different bivariate distributions for (X,Y )

′.
For the gamma distribution note that, as motivated at the end of Section 2.2, the “log”
link is considered. Parameter recovery of the EM algorithm discussed in Section 3 is
investigated, via simulations, by Punzo and Ingrassia (2013).

4.1. EM initialization

Before running the EM algorithm, the choice of the starting values constitutes an
important issue. The standard initialization consists in selecting a value for ψ(0). An
alternative approach (see McLachlan and Peel, 2000, p. 54) consists in performing
the first M-step by specifying, in equation (3.2), the values of τ (0)ij , i = 1, . . . , n and
j = 1, . . . , k. Among the possible initialization strategies (see Biernacki et al. 2003,
Karlis and Xekalaki 2003, and Bagnato and Punzo, 2013 for details) – according to
the R-package flexmix (Leisch, 2004 and Grün and Leisch, 2008) which allows to es-
timate finite mixtures of generalized linear models – a random initialization is repeated
t times from different random positions and the solution maximizing the observed-
data log-likelihood among these t runs is selected. In each run, the n vectors τ

(0)
i =(

τ
(0)
i1 , . . . , τ

(0)
ik

)′

can be randomly generated in a “soft” way, that is by generating k

positive values summing to one, or alternatively in a “hard” way by randomly drawn a
single observation from a multinomial distribution with probabilities (1/k, . . . , 1/k)′.
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4.2. Convergence criterion

The Aitken acceleration procedure (Aitken, 1926) is used to estimate the asymptotic
maximum of the log-likelihood at each iteration of the EM algorithm. Based on this
estimate, a decision can be made regarding whether or not the algorithm has reached
convergence; that is, whether or not the log-likelihood is sufficiently close to its esti-
mated asymptotic value. The Aitken acceleration at iteration q + 1, q = 0, 1, . . ., is
given by

a(q+1) =
l(q+2) − l(q+1)

l(q+1) − l(q)
,

where l(q+2), l(q+1), and l(q) are the log-likelihood values from iterations q + 2, q + 1,
and q, respectively. Then, the asymptotic estimate of the log-likelihood at iteration q+2
(Böhning et al., 1994) is given by

l(q+2)
∞ = l(q+1) +

1

1− a(q+1)

(
l(q+2) − l(q+1)

)
.

In the analyses in Section 6, we follow Subedi et al. (2013) and stop our algorithms
when l

(q+2)
∞ − l(q+1) < ǫ, with ǫ = 0.05.

4.3. Standard errors of the estimates

Once the EM algorithm is run, the covariance matrix of ψ̂ is calculated using the
inverted negative Hessian matrix. The Hessian matrix is computed by the function
hessian() in the R-package numDeriv. In particular, hessian() is evaluated on
the observed-data log-likelihood in correspondence to the solution provided by the EM
algorithm.

5. Model selection and clustering performance

The GLECWM, in addition to ψ, is also characterized by the number of components
k. So far, this quantity has been treated as a priori fixed. Nevertheless, for practical
purposes, choosing a relevant model needs its choice. In model-based clustering, model
selection criteria are commonly used with this end. Among them, we will adopt the
Bayesian information criterion (BIC; Schwarz, 1978)

BIC = 2l
(
ψ̂
)
− d ln (n) ,

where d represents the number of free parameters of the model. The performance of the
BIC, in comparison with other famous likelihood-based information criteria, is evaluated
by simulations in Punzo and Ingrassia (2013).
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In order to evaluate the clustering performance in cases in which the true classifica-
tion is known, the adjusted Rand index (ARI; Hubert and Arabie, 1985), and the misclas-
sification rate (proportion of misallocated observations), will be taken into account. We
recall that the ARI has an expected value of 0 and perfect classification would result in
a value equal to 1. The ARI and the misclassification rate will be respectively computed
according to the functions adjustedRandIndex() and classError() of the mclust
package for R.

6. Real data analysis

We present an application of our approach in modeling a real data set based on a
sample of n = 224 fair-trade coffee consumers interviewed at stores. These data were
first considered in Cicia et al. (2010). The variables of interest are: importance that
respondents attribute to price in their fair-trade coffee purchase (Y ∗; measured on a 1–7
Likert scale where 1 indicated “completely unimportant” and 7 “extremely important”)
and number of fair-trade coffee packages over 10 purchases (X∗; those who did not
consume coffee were excluded from the survey leading to values ranging from 1 to 10).
Cicia et al. (2010), by using the CUB model proposed in D’Elia and Piccolo (2005),
studied the probability mass function of Y ∗ as function of a dichotomous version of X∗

assuming value 1 if X∗ ≤ 4, and 0 otherwise. In particular, the authors conducted two
separated analyses, one for consumers with X∗ ≤ 4, and the other for consumers with
X∗ > 4, so separating a priori with respect to a possible group variable. In our analysis,
X∗ and Y ∗ are respectively replaced by X = X∗− 1 and Y = Y ∗− 1. In each mixture
component of the CWM, a Binomial distribution is adopted with the parameter “number
of replications” (see Table 1) fixed at mX = 9, for X , and mY = 6 for Y . In contrast
with Cicia et al. (2010), we consider the relation between Y and X without imposing an
a priori group structure. The aim is also to compare our clustering/classification results
with respect to the dichotomization of these authors.

Observed data are displayed in Figure 1 by the CW-plot, a graphical representation
proposed in Ingrassia et al. (2014) to highlight the key aspects on which the CWM is
based on. The top panel of the CW-plot in Figure 1 shows the bar plot of the empirical
probability mass function of X . The scatter plot of the data is displayed in the bottom
panel; here, the size of each point is proportional to the joint frequency of the pair
(x, y), for x = 0, 1, . . . , 9 and y = 0, 1, . . . , 6. This also gives information about the
probability mass of the pairs. The models fitted on these data are the Binomial-Binomial
LCM and the Binomial-Binomial CWM. In order to fulfill the identifiability constraint
given at the end of Section 2.3, the considered values for k range from 1 to 3. Table 2
gives the BIC values for the two models. For both of them, the choice k = 2 is the best
one and a strong improvement, of the considered criterion, is obtained by moving from
k = 1 to k = 2; this justifies the presence of a group structure. The CW-plots of the best
BIC models are given Figure 2. The two approaches provide similar results, especially
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Figure 1. CW-plot of the real data (n = 224). In the scatter plot, the point size is
proportional to the number of occurrences.

❍
❍
❍
❍
❍

k
models Binomial-Binomial

LCM
Binomial-Binomial

CWM

1 -2119.759 -1990.296
2 -1709.480 -1715.345
3 -1709.673 -1731.885

Table 2. BIC values for the fitted models.

with reference to the regression model in the “black” group. Moreover, for both models,
the obtained classification is sufficiently in agreement with the dichotomization of Cicia
et al. (2010), as highlighted by the summary measures of Table 3. A slight higher
agreement is obtained for the Binomial-Binomial CWM. Finally, since the Binomial-
Binomial LCM can be seen as nested in the Binomial-Binomial CWM, likelihood-based
quantities, such as the BIC, can be compared even if referred to different models. Thus,
based on Table 2, we can select both the best number of mixture components and the
best model. In our case, the best configuration is represented by the Binomial-Binomial
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(a) Binomial-Binomial LCM (k = 2)
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(b) Binomial-Binomial CWM (k = 2)

Figure 2. CW-plot of the fitted models on the real data.

❳❳❳❳❳❳❳❳❳❳
measures

models Binomial-Binomial
LCM

Binomial-Binomial
CWM

ARI 0.749 0.812
misclassification rate 0.067 0.049

Table 3. Classification results with k = 2.

LCM with k = 2 components; furthermore, apart from the case k = 1, the Binomial-
Binomial LCM is always better than its CWM counterpart for each considered value of
k. For these data we can conclude that the stronger assumption of local independence
can be assumed.

7. Discussion and future work

The generalized linear exponential cluster-weighted model of Punzo and Ingrassia
(2013) constitutes a flexible mixture-based approach to model heterogeneous bivariate
data (also arising by two variables defined on a different support). In this paper it has
been considered, as a benchmark model, to investigate the assumption of local indepen-
dence of the nested exponential-exponential latent class model. Based on a real data set
illustrated in Cicia et al. (2010), investigation has been coped with the use of the BIC.
Future work could involve a different approach based on the likelihood-ratio test; with
this aim, since in the mixture context the χ2 reference distribution gives reasonable ap-
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proximation for the likelihood-ratio statistic only under more stringent conditions (see,
e.g., Lo, 2008), a parametric bootstrap approach may be considered.
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Summary: This paper introduces a strategy for clustering grouped categorical ordinal
data based on the partition of the set of distributions obtained by a quantification of
ordinal categorical variables. The analyzed data are issued by the 2003 edition of the
International Social Survey Programme studying the feelings of national identity and in-
volving about 46 thousands respondents in 36 different countries. The ordinal categori-
cal variables, corresponding to the judgment of each respondent to several questions, are
measured on Likert-type scales. We propose to quantify them according to a procedure
of Optimal Scaling, the Categorical Principal Component Analysis (CATPCA). From
the results of the quantification step, we consider the distribution of individuals belong-
ing to each country on the first two axes, for performing a partitioning of the countries.
The main novelty of our proposal is that we use a Dynamic Clustering Algorithm which
partitions the set of distributions describing the different countries, rather than the means
of the country distributions. In the conclusions, we compare the proposed approach with
a clustering algorithm performed on the means of the country distributions, in order to
point out the advantages in considering distributions in the analysis.

Keywords: Categorical Principal Component Analysis; Optimal Scaling; Ordinal Data;
Histogram-valued data; Clustering distribution data

1. Introduction

Researches, especially in social sciences field, usually work on survey data with a
high number of respondents. An important task is to classify individuals into homoge-
neous classes, in order to deduce similar behaviors and identify typologies of respon-
dents. In this area, researches are often conducted through questionnaires measuring
judgments on ordinal scales. Thus, the recorded data often consists of qualitative or
categorical variables that describe an individual through a limited number of categories.
In the literature, it is known that working on non-numeric data implies ”uncertainty” in
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the measurement scale: the zero point is uncertain; the relationships between categories
is often no-well defined and the mutual distance between ordinal categories might be
unknown. For this reason an important development in categorical and ordinal data
analysis has been the optimal assignment of quantitative values to qualitative scale. In
the literature, there are many optimal scaling (optimal scoring) approaches to deal with
multivariate categorical data. The main references are to Hayashi (1952) and to Gifi’s
school (Gifi, 1981, 1990) but we also mention the papers by de Leeuw (1990) and Heiser
and Meulman, (1994). With the aim of clustering survey data, through algorithms like k-
means, or more in general, dynamic clusters methods, it is required a step of categorical
(ordinal) variables quantification. In particular, in this paper we focus on the analysis of
data issued by the International Social Survey Programme [ISSP, 2003] concerning the
feeling of national identity. It involves about 46 thousands respondents in 36 different
countries all over the world. The choice of concentrating our attention to this survey
data, although it is not very recent, is motivated by the current debate, lively in Italy and
in the other European countries, about the immigration problem after the tragic events
of Lampedusa. Our proposal is based on the quantification of ordinal categorical vari-
ables by means of the Categorical Principal Component Analysis (CATPCA) technique.
The choice of using this method is consistent with the approach proposed by Meulman
(Meulman et al., 2004) in the framework of ALSOS methods for categorical variable
quantification. Our aim is to introduce a new strategy for the representation of groups
of individuals by using a symbolic data approach which is further development of what
has been proposed in the original paper by Meulman. The optimal scaling CATPCA
technique has been widely illustrated in (Meulman et al., 2004) and it is implemented
in the main statistical software (like SPSS, SAS). It is performed on three groups of
variables related to the feeling of national identity of the respondents and their opinion
about immigration.

Starting from the CATPCA results, our main contribute consists in quantifying the
profiles of all the individuals (respondents belonging to different countries) with respect
to the quantification vectors and then, to represent the empirical distributions, for each
country, of their values on the first two factorial axes. We consider the empirical dis-
tributions, as histogram-valued data, according to the symbolic data definition (Bock
and Diday, 2000). In this way, we take into consideration not only the mean-points
of the observations in each country, as in CATPCA analysis, but the quantified-values
distributions. In the context of Symbolic Data Analysis (SDA), many techniques have
been developed for analyzing distributional, or histogram-valued, data, like clustering
methods (Verde and Irpino, 2008), regression model (Billard and Diday, 2006; Dias and
Brito, 2011; Irpino and Verde, 2013a), forecasting model (Arroyo, 2009; Arroyo, Maté,
2008) and factorial analysis (Verde and Irpino, 2013b). We perform a Dynamic Clus-
tering Algorithm (DCA) of histogram valued data, according to the method proposed
by Irpino et al. (2006). Each symbolic data corresponds to a country described by two
empirical distributions of the individual scores on the first and second factorial vari-
ables. Being obtained by an optimal scaling procedure based on PCA, the two factorial



Clustering quantified ordinal data distributions 147Clustering quantified ordinal data distributions 147

variables are assumed to be uncorrelated by definition. The results of the clustering al-
gorithm allow us to identify similar behavior of the citizen in different countries about
their feeling on immigration and their national identity sentiment. The main advantage
of using distributions to represent countries, rather than syntheses of the quantified opin-
ions such as mean-points, is the possibility to take into consideration the variability of
the distributions of the individual scores on the reduced space of the quantified variables,
which highlights the diversity of the opinions inside the same country. Moreover, the
DCA provides a description of each cluster by means of prototypal distributions (for
each variable) which synthesize the characteristics of the distributions of the countries
belonging to the cluster. As illustrated in (Irpino et al., 2006; Verde and Irpino, 2007),
the DCA is based on a suitable distance between distributions, the Wasserstein metric
(Wasserstein, 1969), which has been also proposed in other analysis contexts involv-
ing histogram-valued data (Dias and Brito, 2011; Arroyo, 2009). The �2 norm of the
Wasserstein distance, also known as Mallows distance (Mallows, 1972) can be inter-
preted as an Euclidean distance between quantile functions, the inverse of the empiri-
cal cumulated distribution functions associated to histogram-valued data. This metric
presents many properties, as demonstrated in Arroyo (2009), in Irpino et al. (2006) and
in Irpino and Romano, (2007), so it is preferred to some other metric or dissimilarity
measures between distributions. Finally, the representation of the results on the factorial
plane gives an interpretation of the clusters according to the new quantified variables.
Then, we point out the main differences in the results of our approach with respect to
the one based on the mean-points of the countries (see Meulman, 2004). The paper
is structured as follows: the first section recalls the Optimal scaling procedure (CAT-
PCA) for a quantification of the ordinal variables by means of a monotone regression
as well as by a non linear transformation using spline functions; Section 2 introduces
the histogram-valued data, according to the symbolic data definition. In this section it
is also discussed the way to construct the input data as the empirical distributions of the
individual scores on the reduced subspace of the quantified variables; the third section
illustrates the dynamic clustering algorithm for histogram-valued data and the suitable
�2 Wasserstein distance introduced for comparing distributional data; the last section
presents the proposed strategy by using a large-scale multivariate data set from the ISSP
(2003) concerning feelings of national identity. Then, a comparison with the results of
a classical CATPCA approach is performed. The conclusions open new perspectives on
the clustering techniques for non-numeric ordinal data.

2. Optimal Scaling Transformation: Categorical Principal Component Analysis

To cope with the problems related to the uncertainty of the measurements recorded
on categorical or ordinal scale variables (already mentioned in the introduction), we pro-
ceed to the quantification of variables by means of an optimal scaling approach. When
data are expressed by categorical or nominal levels, a suitable nonlinear transformation
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method is the nonlinear Principal Component Analysis. It converts every category to
a numeric value, in accordance with the level of analysis chosen for the variables, us-
ing optimal quantification. A first version of this method was described by Guttman
(1941), other major contributions in the literature are from Kruskal (1965), Shepard
(1966), Kruskal and Shepard (1974), Young et al. (1978), and Winsberg and Ramsay
(1983) (for an overview, see Gifi, 1990). The Categorical Principal Component Anal-
ysis (CATPCA) based on nonlinear transformation was introduced by Meulman and
Heiser (1999) and implemented in SPSS statistical software (Meulman et al., 2004). In
nonlinear PCA the optimal quantification step and the linear PCA are performed simul-
taneously through the minimization of a least-squares loss function. The two analyses
are alternated through the use of an iterative algorithm that converges to a stationary
point in which the optimal quantifications of the categories do not change anymore.
The nonlinear PCA is based on the classical scheme (Gifi, 1990) looking for the direct
quantification of the categories of categorical variables and the scores of the individuals.

Let Ym be a categorical variable, described by Cm categories, where m = 1, . . . ,M
is the index of the variable. We denote with Gm the indicator matrix (according to the
term used for the first time by de Leeuw in 1968, but also known as attribute, dummy,
incidence matrix) with N rows, with N the number of individuals, and Cm columns.
The elements of Gm assume the values 0 or 1 according to the category chosen by the
individuals. Assuming that each individual can choose only one category of response
for each variable, the Gm is a complete disjunctive table.
With ym is denoted the quantification vector for the Cm categories, such that the trans-
formed variable is: qm = Gmym.
The quantified variable qm becomes a single vector of dimension N which assigns
a numerical value to each individual with respect to categorical variable. Define x
the vector of the quantification of the individuals as the mean vector of all the qm:
x = M−1

∑M
m=1 qm; for same direct quantification ym of the categories, x is the vector

of the induced scores of the N individuals.
We still define the induced quantification of a category as the average of the scores of
those individuals that are mapped to such category:

ym = D−1
m G’mx (1)

where D−1
m is the inverse of the matrix Dm = G’mGm of the weights of the categories,

given by the frequencies of the categories (the latter assumes that there are no categories
with zero frequency). The two procedures require that the solution for direct quantifica-
tion of the individuals x must be proportional to the induced individual scores, and vice
versa, that the direct quantification ym of the categories must be proportional to the in-
duced category quantification D−1

m G’mx. This discussion is related to just one solution
of direct quantification of individuals x and of direct quantification ym of the categories
of the m-th categorical variable.
The here recalled nonlinear PCA procedure allows us to obtain P different solutions.
This implies that the category quantifications are collected in a matrix Ym of dimension
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(Cm×P ), and X (N ×P ) is the matrix of the N individual scores on the P dimensional
representation space. We define am as the vector of dimension Cm of the coordinates of
the categories of the variable Ym on the same subspace and A as the matrix of the the
coordinates of the categories of the M variables.

The CATPCA objective function can be written as follows:

L(Q,X,A) = M−1
M∑

m=1

‖qm − Xam‖2 ; (2)

where Q is the matrix of the quantified variables qm. The optimal quantification is given
by the Cm values of the vector ym. The objective function can be also written as:

L(y,X,A) = M−1
M∑

m=1

‖Gmym − Xam‖2 ; (3)

under the constrains: u′Gmym = 0 and y′
mDmym = 1, having indicated with u

the unitary vector of dimension m and y the vector of the ym quantifications of the M
variables.
An approximation of the nonlinearly scaled variables qm = Gmym, in the P -dimensional
subspace, is given by the projection of the N object points X on the vector am.

Being the categorical variables Ym (for m = 1, . . . ,M) discrete ordinal variables,
the quantification solutions ym must belong to a cone in a Cm-dimensional space.
Nonlinear PCA procedures (e.g. CATPCA) find solutions by:

• weighted monotone regression process, which makes ym monotonically increas-
ing. The weights are the diagonal elements of the matrix Dm;

• alternatively, a regression monotone spline is used for a direct quantification of or-
dinal categories. The spline transformation is computed as a weighted regression
(with the same weights as the monotone regression) of ym on the I-spline basis
Sm: y*m = dm+Smbm. For the spline ordinal scaling level the elements bm are
restricted to be no negative.

The procedure starts with an estimate of ym satisfying the constrains. Then, it com-
putes Gmym and minimizes SSQ(Q − XA) on X and A. Given X and A, a new ym is
computed, for each m, by a normalized cone regression.

The main results of CATPCA are represented by the graphical representations: a
biplot can display the individuals, as points, and the transformed variables, as vectors.
Furthermore, groups of individuals can be highlighted by the joint representation of their
centroids (mean-points) and the most characterizing category points of variables.
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3. Representation of groups of individuals by Histogram-valued data

In this section, we introduce a way to represent groups of individuals, on the achieved
dimensionally reduced subspace, as symbolic data. In SDA, symbolic data are individual
descriptions of symbolic objects. They assume a set of numbers or categories (weighted
or not) of set-valued variables, or symbolic variables; whereas classical data take only a
single value (a number or a category) for each variable. Bock and Diday (2000), in the
reference book of SDA, defined symbolic variables as follows:

Let E be a set of objects, a variable Z is termed set-valued with domain Z , if for all
i ∈ E,

Z : E → D
i �→ z(i)

(4)

where the description D is defined by D = D(Z) = {U �= ∅|U ⊆ Z}.
A set-valued variable Z is called multi-valued if its description set Dc is the set of

all finite subsets of the underlying domain Z; such that |z(i)| < ∞, for all i ∈ E.

A set-valued variable Z is called categorical multi-valued if it has a finite set Z of
categories and quantitative multi-valued if the values z(i) are finite sets of real
numbers.

A set-valued variable Z is called interval-valued if its description set DI is the set of
intervals of �.

A modal variable Z on a set E of objects with domain Z is a mapping z(i) =
(S(i), πi), ∀i ∈ E, where: πi a measure (frequency, probability or weight) on
the domain Z of the possible observation values (completed by a σ-field), and
S(i) ⊆ Z is the support of πi in the domain Z . The description set of a modal
variable is denoted with Dm.

The Histogram valued is a particular case of modal variable when we assume that:

the support S(i) = [zi; zi] is bounded in � and is partitioned into a set of ni intervals,
or bins, Ili, as follows:
S(i) = {I1i, . . . , Ili, . . . , Inii}, where Ili = [zli, zli) (for l = 1, . . . , ni), i.e.:

i. Ili ∩ Il′i = ∅; l �= l′ ;
ii.

⋃
l=1,...,ni

Ili = S(i)

Histogram definition supposes that each interval Ili is uniformly dense. In such a way,
it is possible to define the description of the object i as follows:
z(i) = {(Ili, πli) | ∀Ili ∈ S(i); πli = Ψi(zli ≤ y ≤ zli) =

∫
Ili

ψi(ν)dν ≥ 0}, where
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∫
S(i)

ψi(ν)dν = 1.

According to our proposal, we represent groups of individuals by the means of the
histogram of the individuals scores on the two first principal axes (stored in the first
two columns of X). Thus, we denote by Z1 and Z2 two histogram variables and by
z1(i) = (I1li, π1li) (where ∀I1li ∈ S1(i)) and z2(i) = (I2li, π2li) (where ∀I2li ∈ S2(i))
the histograms of the i-th group for the first and second principal axis, respectively.
Being the factorial axes orthogonal for construction, the two new variables Z1 and Z2

are uncorrelated. The S1 and S2 are respectively the support of Z1 and Z2. Furthermore,
we have chosen to partition the support of each histogram in 50 intervals (bins), bounded
by the 50 quantiles of the distribution.

4. Dynamic Clustering algorithm for Histogram-valued data

Dynamic Clustering Algorithm (DCA), here proposed for partitioning the set E of
histogram data, consists in a generalization to the case of multi-valued data, of the well
known method of the “Nuées Dinamiques” introduced by Diday (1971). In its classical
formulation, the DCA represents a general reference for partitioning algorithms.

It is based on two alternating steps: a representation and an allocation step. DCA
looks for the partition P ∈ PK of E in K classes among all the possible partitions PK ,
and the vector L ∈ LK of K representative elements of the classes Ck ∈ P such that
the fitting criterion ∆ between L and P is minimized:

∆(P∗, L∗) = Min{∆(P, L) | P ∈ PK , L ∈ LK}. (5)

Such a criterion is defined as the sum of dissimilarity, or distance measures δ(zi, Gk)
between each element zi of Ck ∈ P and the class representation Gk ∈ L:

∆(P, L) =

K∑
k=1

∑
yi∈Ck

δ(yi, Gk).

• Initialization. The algorithm starts from a random partition P(o) of the set E in a
fixed number K of clusters and compute the representative element Gk associated
with a class Ck as an element of the description space of E. When the data are
represented by histograms, Gk, defined as prototype of the cluster (Verde, Irpino,
2007), is still a histogram.

• The allocation step consists in allocating the elements zi to a cluster Ck according
to the minimum distance δ(zi, Gk) from the prototype Gk:
zi is assigned to the cluster Ck if δ(zi, Gk) < δ(zi, Gk′) for all k′ �= k.

• The representation step computes the prototypes Gk of the clusters Ck of the new
partition P(1).
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The two steps are alternated until the partitions and the prototypes do not change
anymore.

The main choice concerns the measure δ(.) of dissimilarity, or the distance, to com-
pare histogram data. As proposed by the authors in previous papers, a suitable compar-
ison measure is the �2 Wasserstein distance (also known as Mallows distance (1972)),
for the important properties that it presents.

As in the original DCA, the consistence between the distance measure and the pro-
totype function used for representing the clusters, guarantees the convergence of the
algorithm to a stationary point.

4.1. Wasserstein metric for histogram data

The �p Wasserstein distance [12] is a distance function defined between the proba-
bility distributions of two random variables X1 and X2, on a given metric space S . The
minimal �1 −metric was introduced and investigated already in 1940 by Kantorovich
for compact metric spaces. In 1914, Gini introduced the same metric in a discrete set-
ting on the real line, Salvemini (1943), in the discrete case, and Dall’Aglio (1956), in the
general case, proved the basic representation of �p norm between the quantile functions
of the two random variables X1 and X2. Denoting with F (X1) and G(X2) the distri-
bution functions of X1 and X2 respectively, the �p Wasserstein distance is expressed as
follows:

dW (X1, X2) :=




1∫

0

∣∣F−1(t)−G−1(t)
∣∣p dt




1
p

.

Mallows (1972) proposed a metric corresponding to the �2 version of the Wasserstein
metric. In particular, in our analysis we focus our attention on such �2-norm distance
because it can be interpreted as the Euclidean distance between quantile functions.

The main computational drawbacks are related to the invertibility of the distribution
functions. But, as we will show in the following, this problem can be addressed, when
data are histograms, by introducing an exact and efficient way to compute this distance.

Given a histogram description z(i), with Hi be the number of weighted intervals
(bins):

z(i) = {(I1i, π1i) , ..., (Ihi, πhi) , ..., (IHii, πHii)} ,

we define the quantities wli in order to represent the cumulative weights associated
with the elementary intervals of z(i):

wli =

{
0 l = 0∑

h=1,...,l

πhi l = 1, . . . , Hi
. (6)
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Using (6), and assuming a uniform density for each Ih, we can describe the empirical
distribution function as:

Ψi(z) = wi + (z − z li)
wli − wl−1i

z li − zli
iff z li ≤ z ≤ zli.

Then, the inverse distribution function is a piecewise function defined as follows:

Ψ−1
i (t) = z li +

t− wl−1i

wli − wl−1i
(zli − zli) wl−1i ≤ t < wli.

To compute the distance between two histogram descriptions z(i) and z(j) we need to
identify a set of common uniformly dense intervals. Let w be the set of the cumulated
weights of the two distributions: w = [w0, ..., wl, ...., ws] where: w0 = 0 ws = 1 and
πl = wl−wl−1. To solve the problem of a common set w of cumulated weights (relative
frequencies) associated to the s-th quantiles of the two distributions, we consider equi-
depth histograms. The weights πl = wl − wl−1 associated to the intervals (bins) Ili are
all equals (for l = 1, . . . , s) to the relative frequency 1

s .
The squared distance between the two histogram descriptions is computed as:

d2M (z(i), z(j)) :=

s∑
l=1

wl∫

wl−1

(
Ψ−1

i (t)−Ψ−1
j (t)

)2
dt. (7)

Each couple (wl−1, wl) allows us to identify two uniformly dense intervals, one for i
and one for j, having respectively the following bounds:

Ili = [zli, zli] and Ilj = [zlj , zlj ].

Recalling that Ψ−1
u (wl−1) = zlu; Ψ

−1
u (wl) = zlu (for u = i, j), for each interval it

is possible to compute the centers and the radii, as follows:

clu = (zlu + zlu)/2 rlu = (zlu − zlu)/2.

Because intervals are uniformly distributed, we may express them as function of
their centers and radii and rewrite equation (7) as:

d2W (z(i), z(j)) =

s∑
l=1

πl

[
(cli − clj)

2
+

1

3
(rli − rlj)

2

]
. (8)

The proposed distance can be easily extended to the case of P variables. Un-
der the hypotheses of independence of the P variables, the multivariate version of
d2W (z(i), z(j)) is additive on the Zp, with p = 1, . . . , P variables.
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4.2. Using �2 Wasserstein distance in dynamic clustering algorithm

Given a set of n histogram data, we define the centroid of the elements in E as a
histogram itself (or prototype of the global set E). According to the criterion function
minimized in DCA, the prototypal histogram Z(b) can be computed minimizing the
following (sum of distances) function:

f(c1b, r1b, . . . , csb, rsb) =

n∑
i=1

s∑
j=1

πj

[
(cji − cjb)

2
+

1

3
(rji − rjb)

2

]
. (9)

Once fixed s (and so also πj) to be equal to the cardinality of the elementary intervals of
the union of the supports of the z(i)’s, the support of z(b) can be expressed as a vector
of s pairs (cjb, rjb). Function in (9) holds a minimum when the following first order
conditions are satisfied:



∂f
∂cjb

= −2πj

n∑
i=1

[(cji − cjb)] = 0

∂f
∂rjb

= − 2
3πj

n∑
i=1

[(rji − rjb)] = 0

for each j = 1, . . . , s. It is easy to prove that function (9) is minimum when:

cjb = n−1
n∑

i=1

cji ; rjb = n−1
n∑

i=1

rji.

The barycenter (prototype) of the n histogram data is expressed as follows:

Z(b) = {([c1b − r1b; c1b + r1b], π1); . . . ; . . . ; ([csb − rsb; csb + rsb], πs)}. (10)

The identification of a barycenter allows us to show a second property of the pro-
posed distance: it is possible to express a measure of inertia of data using d2W . The total
inertia, with respect to the barycenter z(b) of a set of n histogram data, is given by the
following quantity:

TI =

n∑
i=1

d2W z(i), z(b).

Furthermore, according to the Huygens’, Total inertia can be decomposed into the sum
of Within- and Between-clusters inertia. Let us consider a partition of E into K clusters.
For each cluster Ck, with k = 1, ..,K, a histogram barycenter, denoted by z(bk), is
computed by a local optimization of (9). Minimizing the following function:

f(c1b1 , r1b1 , . . . , csbK , rsbK ) = n−1
K∑

k=1

|Ck|
m∑
j=1

πj

[
(cjbk − cjb)

2
+

1

3
(rjbk − rjb)

2

]

(11)
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where |Ck| is the cardinality of cluster Ck. It is possible to prove that functions (9)
and (11) reach the a minimum for the same z(b). The last result permits to obtain the
following decomposition of the total inertia1:

TI = WI +BI =

K∑
k=1

∑
i∈Ck

d2M (z(i), z(bk)) +

K∑
k=1

|Ck|d2M (z(bk), z(b)). (12)

5. Application on the ISSP 2003 dataset: main results

An example of Principal Component Analysis with nonlinear optimal scaling trans-
formations (CATPCA) is presented by Meulman et al (2004). The authors use a large-
scale multivariate data set from International Social Survey Programme (ISSP, 1995)
concerning the feeling of national identity from about 28,500 respondents in 23 differ-
ent countries.

Following that example, we have performed a similar analysis on the dataset of a
successive edition of the same international survey: the ISSP 20032. We have considered
only three groups of variables (almost the same of those analyzed by Meulman et al.,
2004). The first group of four variables (section Q.2 of the questionnaire) indicates how
close the respondents feel toward their town or city (a), their county (b), their country (c),
and their continent (d). Answers are recoded by a score ranging from 1 (not close at all)
to 4 (very close). The second group of eight variables (section Q.3 of the questionnaire)
is related to how the respondents consider important the following things about their
national identity: a. to have born in [Country]; b. to have citizenship; c. to have there
lived for most of one’s life; d. to be able to speak the country language; e. to be a [of the
dominant religion of the country]; f. to respect [Country] national political institutions
and laws; g. to feel [Country nationality]; h. to have [Country nationality] ancestry.
Data are recoded by a score ranging from 1 (not important at all) to 4 (very important).
The third set of variables (section Q.10 of the questionnaire) concerns opinions about
immigrants, asking the respondents’ agreement, on a scale from 1 (strongly disagree)
to 5 (strongly agree), about the following statements: a. Immigrants increase crime
rates, b. Immigrants are generally good for the economy, c. Immigrants take jobs
away from people who were born [in this country], d.Immigrants make [this] Country
more open to new ideas and cultures; e. Government spends too much money assisting
the immigrants. Finally, respondents were asked to scale themselves with respect to
the statement (section Q.11 of the questionnaire): The number of immigrants to [my
Country] nowadays should be: reduced a lot (1) . . . increased a lot (5).

1 For the sake of brevity, we do not report here the proof.
2 The ISSP is a continuous annual cross-national data collection project that has been running

since 1985. More detailed information about the ISSP data service are available on the ISSP
Internet pages provided by the Zentral Archiv, Cologne: ”http://www.tarki.hu/en/research/issp/”.
We refer to the Questionnaire ISSP - 2003 National Identity (II)
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The number of effective respondents to this survey was 45,993 in 36 countries. How-
ever, since the number of respondents in each country was proportional to the population
size, a random resampling from the original data has been performed in order to give
the same weight to all the countries in the analysis. The analysis has been conducted
on 18,000 individuals corresponding to 500 individuals for each one of the 36 countries.
The list of the analysed variables is presented in tab. 1, while the list of the respective
categories is in tab. 2.

Var-id Label Variable
Q2a Close-City How close do you feel to: Your town - city
Q2b Close-Province How close do you feel to: Your [county], province
Q2c Close-Country How close do you feel to: [Country]
Q2d Close-Continent How close do you feel to: continent
Q3a Imp-born Important: to have been born in [Country]
Q3b Imp-nationality Important: To have [Country Nationality] citizenship
Q3c Imp-live Important: To have lived in [Country] for most of one’s life
Q3d Imp-language Important: To be able to speak [Country language]
Q3e Imp-religion Important: To be a [religion]
Q3f Imp-politics Important: To respect [Country Nationality] political

institutions and laws
Q3g Imp-identity Important: To feel [Country Nationality]
Q3h Imp-ancestry Important: To have [Country Nationality] ancestry
Q10a I-Crime Immigrants increase crime rates
Q10b I-Economy Immigrants are generally good for [Country’s] economy
Q10c I-Job Immigrants take jobs away from people who were born in
Q10d I-Culture Immigrants improve [Country Nationality] society by

bringing in new ideas and cultures
Q10e I-Assisting Government spends too much money assisting immigrants
Q11 N-Immigrants Number of immigrants coming to Country

Table 1. List of the variables of analysis (Var-id ”Variable identifier”; Label”short name
of the variable”; Variable ”Name of the variable”)

The optimal scaling transformation of the 18 categorical ordinal variables is per-
formed by CATPCA, using SPSS Software. The CATPCA, as illustrated above, achieves
a quantification of the ordinal variables by a monotone regression or by a spline re-
gression under the constrains of positive coefficients in order to obtain solutions in a
cone-space. Then, the CATPCA performs a reduction of the space of the transformed
variables by extracting the factorial axes maximally correlated with the quantified vari-
ables. Different graphical representations can be shown in order to analyze the structure
of correlation between the variables in the analysis, the position of the categories of the
quantified variable along the straight lines trough the origin which represent the vari-
ables on the factorial plane. The number of objects in the ISSP data set is too large to
inspect the relations between object and variables or categories, so the individual points
are represented by the centroids of the respondents of each country.

The fig. 1 shows the plot of the variables on the first factorial plane (axis 1 and
2) of the CATPCA. The first axis (that explains the 26.39% of the total inertia of the
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Figure 1. Quantified variables representation on the first factorial plane of CATPCA.
(Labels of variables are set in correspondence of the lowest values of the quantified
categories, corresponding to the original categories “Not very close”, “Not very impor-
tant”, “Disagree Strongly” and “Reduced a lot”)
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Id-variables Categories
Q2a
Q2b (1) Very close; (2) Close;
Q2c (3) Not very close; (4) Not close at all
Q2d
Q3a
Q3b
Q3c
Q3d (1) Very important; (2) Fairly important;
Q3e (3) Not very important; (4) Not important at all
Q3f
Q3g
Q3h
Q10a
Q10b (1) Agree strongly; (2) Agree; (3) Neither agree nor disagree;
Q10c (4) Disagree; (5) Disagree strongly
Q10d
Q10e
Q11 (1) Increase a lot; (2) Increase a little; (3) Remain the same;

(4) Reduced a little; (5) Reduced a lot

Table 2. List of the categories of the variables (Id-var. ”Identifier of the variables”;
Categories ”Categories of the variables”)

quantified variables) is strongly correlated to the quantified statements related to the Na-
tional Identity (Q2-how close the respondents feel toward their city, province, country,
continent; Q3 - how the respondents consider important to be born in their country, to
have citizenship, to have lived in their country for most of one’s life, to be able to speak
the country language, to be of a prevalent religion of the country, to respect the political
institution and the laws, to feel their country nationality, to have ancestry of the same
country nationality): the negative versus of the axis identifies strong nationalist positions
expressed by the quantified categories Very close and Very important while the positive
side of the axis corresponds to less nationalist behaviors, as reveal the position on the
plane of the quantified categories Not very close and Not very important. The second
axis (that explains the 15.57% of the total inertia of the quantified variables) is then cor-
related to the quantified variables expressing the tolerance of the respondents about the
immigrates (Q10 - Immigrants: increase crime rates, are generally good for country’s
economy, take jobs away from people who were born in country, improve [Country Na-
tionality] society by bringing in new ideas and cultures; Government spends too much
money assisting immigrants; Q11 - Judgements about the Number of immigrants com-
ing to Country). It opposes positions more favorable to immigration (positive side of
the axis) versus positions much more critical toward the increasing of the immigration
in the country of respondent.
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Figure 2. CATPCA: (Right panel) Centroid of countries on the first factorial plane. (Left
panel) contour plot and correlation coefficient of the bivariate kernel density estimates
of the distribution of points projected on the first factorial plane.

5.1. Clustering quantified ordinal distributions

In Meulman and al. (2004), using Country variable as supplementary one, a repre-
sentation of the centroids on the factorial plane is proposed. A straightforward way of
clustering countries could be a k-means of the Country-related centroids. However, the
use of centroids instead of the whole Country-related data implies that, for each country,
the distribution of points of a particular country is symmetric around its centroid and it
is not significatively different in scale and shape with respect to the other country dis-
tributions. The Country-related centroids on the first factorial plane are plotted on the
left panel of Fig.2, while on the right panel it is represented the contour plot of a two
dimensional kernel density estimate (using a Gaussian kernel) of the distribution of the
individual points. Looking at the left panel, as it is expected, it is not easy to identify
Country-related clusters and also similarities among country distributions.

If we look at the contour plot of each countries, as reported in Figs. 3, 4 and 5
(we reported also the correlation index of each bivariate density), we can observe that:
the distributions appear to show a low correlation within each country, except for South
Africa, the distributions are skewed. In this case, using the centroids as representa-
tives of each country could be a too restrictive choice, because they do not sufficiently
synthesize the information of the country distribution. In such a case, we propose to
use marginal distributions for each country and cluster them according to the Wasser-
stein distance between distributions. In this case, we use a histogram representation for
the two marginal distributions associated with each country according to the CATPCA
scores on the first and second factorial axis.

Starting from the individual scores on the first and second factorial axis, each coun-
try is represented as an equi-depth histogram of 50 bins. For each histogram we have
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Figure 3. CATPCA: kernel density estimates for each country on the first factorial plane
(first group of 12 countries alphabetically ordered).
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Figure 4. CATPCA: kernel density estimates for each country on the first factorial plane
(second group of 12 countries alphabetically ordered).
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Figure 5. CATPCA: kernel density estimates for each country on the first factorial plane
(last group of 12 countries alphabetically ordered).

computed the distribution function and the corresponding quantile function. Then, we
perform on these data, a k-means (on the centroids) and a dynamic clustering algorithm
(using distributions) in order to compare the results of the two partitioning approaches
of the set of aggregated data and to point out the main advantage of considering the
distributions rather than the simple centroids of the set of respondents belonging to the
different countries. Both in k-means and DCA, it is needed to fix in advance the number
of the clusters partitioning the set of data. We chose to fix the number of clusters to 6
on the basis of the Calinski Harabasz index (1974) computed on the k-means of the cen-
troids, and varying the number of clusters from 2 to 8 (that we consider as a reasonable
limit for clustering 36 objects). Main results are reported in table 3.

The partition obtained by k-means algorithm is presented in tab. 4 and the optimal
value of the optimized criterion is 1.1273 (in tab. 3) corresponding to the Within Inertia.
A measure of the partition quality, expressed as QPI = 1−W/T , is equal to 0.87. The
quality partition index QPI can be considered as the generalization of the ratio between
the Between-inertia and the Total-inertia.

Centroids of the countries are projected on the factorial plane as shown in fig. 6.
Countries belonging to the same cluster are connected. According to the correlation
between the first axis and the quantified variables which has permitted to give an in-
terpretation of the new factorial variables, it is possible to describe Cluster 1 as that
constituted by the most nationalist countries (like: Hungary, Bulgaria, Chile, South
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No. of clusters Explained inertia Within (W) Between (T) Total (T) CH-index
2 0.4551 4.9545 4.1384 9.0929 28.3900
3 0.6614 3.0784 6.0145 9.0929 32.2300
4 0.7506 2.2675 6.8253 9.0929 32.1000
5 0.8249 1.5914 7.5015 9.0929 36.5300
6 0.8760 1.1273 7.9656 9.0929 42.3900
7 0.8958 0.9472 8.1457 9.0929 41.5600
8 0.9132 0.7886 8.3042 9.0900 42.1100

Table 3. Calinski Harabasz index for determining the number of clusters in k-means
algorithm

Cluster 1 Cluster 2 Cluster 3
Austria (AT) Canada (CA) Czech Republic (CZ)
Bulgaria (BG) Israel Jews (IL-J) Israel Arabs (IL-A)
Chile (CL) Philippines (PH) Russia (RU)
Hungary (HU) United States (US)
Poland (PL) Uruguay (UY)
South Africa (ZA) Venezuela (VE)
Cluster 4 Cluster 5 Cluster 6
Denmark (DK) Australia (AU) Germany-East (DE-E)
Finland (FI) Korea (South) (KR) Germany-West (DE-W)
France (FR) Netherlands (NL) Great Britain (GB-GBN)
Ireland (IE) Spain (ES) Latvia (LV)
Japan (JP) Sweden (SE) New Zealand (NZ)
Norway (NO) Switzerland (CH) Portugal (PT)
Slovenia (SI) Slovakia (SK)

Taiwan (TW)

Table 4. K-means partition of the countries in K=6 clusters



Clustering quantified ordinal data distributions 163Clustering quantified ordinal data distributions 163

Africa and Austria and Poland) on the basis of the average of the opinions given by
their respondents; a similar interpretation can be given for Cluster 2, especially for the
position of some countries (like: Venezuela, Philippines, United States, Israel Jews) -
less, Uruguay and in a middle position Canada and New Zealand. Countries belonging
to Cluster 3 (like: Russia, Israel Arabs and Czech Republic) also can be interpreted as
closer to nationalist positions than the more open ones. Opposed along the first facto-
rial axis, we find Cluster 5 of the countries the less nationalist (like: The Netherlands,
Sweden, Switzerland, South-Korea, Australia and Spain) and also Cluster 6, especially
for some countries (like: Latvia, Taiwan, Germany West and East) and less for Great
Britain which is in an intermediate position. Finally, Cluster 4 is that of the countries
which assume (in average) a middle position with respect to their feeling about national
identity.

Clusters 2, 3, and 6 can be better interpreted according to the meaning given to the
second axis: tolerance of the respondents (in average) about the immigrates. Countries
in Cluster 2 (like: Uruguay, Canada, Venezuela, Philippines, United States, Israel Jews)
are much more favorable to immigration in opposition to the those in Cluster 3 (like:
Russia, Israel Arabs and Czech Republic) and ine Cluster 6 (like: Germany West and
East, Great Britain, Latvia, Taiwan).

In order to take into account the distributions of the opinions expressed by the re-
spondents of each country in the clustering procedure, a dynamic clustering on histogram-
valued data is performed by considering a number of clusters equal to six. The partition
obtained by DCA is shown in tab. 5. The inertia explained by the histogram-valued
prototypes of the dynamic clustering is equal to 75.71% of the total inertia, that amounts
to 10.8163. According to the formula 12, it is due to the variability of the centers and the
variability of the radii of the bins of the histograms. In such a way, it takes into accounts
the internal variability of the empirical distributions and not only of the centroids (like
in k-means on the centroids). It is worth noting that the total inertia is computed by
using the �2 Wasserstein distance based on the squared differences between the quan-
tile functions of the country respondents (associated with the histogram representations)
and the barycenter of all the quantile distributions. That is different from considering
the total inertia computed as squared differences between the means of the countries and
the global means (of the all the means of the countries).

In order to show the different structure of the clusters obtained by the k-means al-
gorithm, in fig. 7 are represented the means of the clustered countries connected to the
respective barycenters. For facilitating the interpretation, we have not represented the
histograms in this graph.

Barycenters of clusters, given by the histogram-valued prototypes, are represented,
for each dimension (axis 1 and axis 2), in fig. 8.

Moreover, in fig. 9 the prototypes are represented on the factorial plane in false
colors. The different intensity (from dark to light) of the colors is related to the density
of the distributions (from high-density = dark to low-density=light).

It is worth to note that the prototypes give a synthesis of the empirical distributions in
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Figure 6. Country means representation on the factorial plane (axis 1 and 2) by CAT-
PCA. Countries are connected according to their belonging to the clusters obtained by
k-means algorithm on the means of the country - with K=6.
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Cluster 1 Cluster 2 Cluster 3
Austria (AT) Canada (CA) Czech Republic (CZ)
Bulgaria (BG) Israel Jews (IL-J) Germany-East (DE-E)
Chile (CL) Philippines (PH) Germany-West (DE-W)
Hungary (HU) United States (US) Great Britain (GB-GBN)
Poland (PL) Uruguay (UY) Israel Arabs (IL-A)
South Africa (ZA) Venezuela (VE) Russia (RU)

Slovakia (SK)
Taiwan (TW)

Cluster 4 Cluster 5 Cluster 6
Denmark (DK) Australia (AU) Latvia (LV)
Finland (FI) Korea (South) (KR) Netherlands (NL)
France (FR) New Zealand (NZ) Slovenia (SI)
Ireland (IE) Portugal (PT) Spain (ES)
Japan (JP) Sweden (SE)
Norway (NO) Switzerland (CH)

Table 5. Dynamic clustering partition of the countries in K=6 clusters
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Figure 7. Country means representation on the factorial plane (axis 1 and 2) by CAT-
PCA. Countries are connected according to their belonging to the clusters obtained by
DCA on the distributions of the country - with K=6.
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Figure 8. Histogram prototypes of the K=6 clusters by DCA (axis 1 and 2)
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the clusters in terms of average histogram. They are also the elements, associated to the
quantile distributions, which minimize the sum of the squares �2 Wasserstein distance,
that is the loss function in the analysis. A different representation of the barycenters
of the clusters would not be consistent with the criterion of the algorithm and, then, it
would not guarantee the convergence of the criterion value to the a stationary point.

We observe that the final partition obtained by the DCA is different from the partition
achieved by k-means algorithm on the means of the countries. It is evident an increasing
of the internal variability of the clusters due to have taken into consideration not only
the variability of the averages of the countries respondents, but the distributions of the
counties. The main differences are especially for Cluster 6 along the fist axis. Now, it
includes Latvia and Slovenia that, in the k-means representation, were in different clus-
ters. Its interpretation is of a more strong cluster of no-nationalist countries. Cluster 5 of
DCA, including two elements of Cluster 5 obtained by k-means and Portugal and New
Zealand, it is placed in a more soft position with respect to national identity feeling. Op-
posed along the first axis, we find Cluster 1 of the countries where the respondents have
expressed a strong national identity feeling. These countries are the same of Cluster 1
obtained by k-means algorithm. Cluster 3 obtained by DCA merges two clusters (Clus-
ter 3 and Cluster 6) of the k-means partition and it defines better a cluster of countries
the most unfavorable to the immigration, while Cluster 2 joins those countries where a
positive feelings towards immigrants is prevalent (it is constituted by countries in Clus-
ter 2 of the k-means partition, except for New Zealand that now migrates in Cluster 5 of
DCA partition). Finally, Cluster 1 is characterized by those countries where the opinions
about the national identity and the immigrations are mainly expressed by the intermedi-
ate categories of the scales of the answers (corresponding to moderate positions).

6. Conclusion

The main advantage of our approach versus the k-means on the centroids is to take
into account the distributions of the respondents with respect to the quantified categori-
cal ordinal variables; this allows to keep the variability and the skewness of them in the
synthesis of the data (when they are grouped in subclasses). In our opinion it is impor-
tant, especially in social researches, to do not ”compress” all the information through
the ”means” of the responses but to enrich the data in the analysis by considering a more
suitable synthesis of them, for instance, by histograms.

The introduction of the Wasserstein metric to compare distributions in the Multi-
variate Data Analysis of Complex data (including symbolic data) has open a new field
of research with a recent development of new techniques (e.g. clustering, regression,
forecasting model, factorial analysis). In perspective, we think to investigate the im-
provement of our strategy by introducing as space-dimensional reduction technique (the
PCA step) in optimal scaling quantification, a factorial method which works directly on
the distributions for each quantified variable of groups of data (like for the countries
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in the example). Other main challenges to face will concern the interpretation of the
graphical representations of distributions on factorial planes.
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Summary: This work presents the use of the Partial Possibilistic Path Modeling in the 
context of subjective measurement, where ordinal data are collected from rating 
surveys to measure latent concepts. The method combines the principles of PLS path 
modeling to model the net of relations among the latent concepts, and the principles of 
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emotional aspects of teaching is used to illustrate the method.

Keywords: Component-based SEM; Possibilistic regression; Interval valued data; Sub-
jective data.

1. Introduction

Structural equation models (SEMs) include various statistical methodologies that
aim to estimate a network of causal relationships among latent variables (LVs) defined
by blocks of manifest variables (MVs) (Bollen, 1989; Kaplan 2000). SEMs undertake a
multivariate analysis of multi-causal relationships among different independent phenom-
ena. For example, in relational and social studies SEMs allow behavior and performance
to be explained and predicted.

The research paradigm of SEMs grounds on psychometric (covariance-based, LIS-
REL) and chemometric research tradition (variance-based, Partial Least Squares (PLS)).
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LISREL, an acronym for linear structural relations, is a statistical software package used
in structural equation modeling (Jöreskog, 1970); specialized literature refers to LISREL
also as a methodology known as ‘classical SEM’. This originates from the classical test
theory, which entails application of a covariance-based structural equation model (CB-
SEM). The PLS approach, also called ‘component-based SEM’ or ‘PLS Path Model-
ing’ (PLS-PM), is considered a soft-modeling approach constructing composite indexes
and entails application of a variance-based structural equation model (VBSEM) (Wold,
1975). There is an important difference in theoretical background between the two ap-
proaches. CBSEM is considered a confirmatory method, which is guided by theory
because it seeks to replicate the existing covariation among manifest variables. VBSEM
is considered an exploratory method also based on some theoretical foundations, but
its goal is to predict the behavior of relationships among constructs and to explore the
underlying theoretical concepts. From a statistical point of view, CBSEM aims to re-
produce the existing sample covariance matrix by using a global optimization criterion,
whereas VBSEM formulates the causality dependencies between LVs in terms of linear
conditional expectations and aims to maximize explained variance by solving separately
any regression in the model.

The choice between the CBSEM or VBSEM approach is grounded on some re-
search conditions: (i) conceptual background of the research problem under study; (ii)
indicator-construct design; (iii) measurement scale; (iv) sample or population size under
study.

PLS-PM as a soft modeling approach has to be preferred in those application fields
where the traditional assumptions (related to the distributions, the measurement scale
and the sample size) are not tenable (Tenenhaus et al., 2005). This is why PLS-PM is
increasingly being used in empirical studies of many socio-economic phenomena. In
particularly, PLS-PM is strictly related to subjective measurements, where data derived
from surveys are collected to measure concepts like racism, happiness, corruption and
customer satisfaction. These latent concepts are generally measured by scores defined
over interval scales. Being latent variables, such scores are defined through the sum of
(weighted) scores measured on manifest variables. However, the use of ordinal scales
is largely preferred and very common to collect subjective measurements (Davino and
Romano, 2013). The Likert scale (named after its inventor Rensis Likert), which is often
also referred to as the rating scale, actually represents the sum of rating scale measured
scores. Likert assumed that the frequency distributions over the measuring scales were
symmetric and that the sum of the ratings could be reasonably approximated by a dis-
tribution defined over ℜ. To justify the approximation of the rating scales to an interval
scale, in his original proposal, Likert assumed that the number of items referring to a
single scale was eight and that the measuring scale had seven ordered ratings. Gener-
ally, it frequently happens that answers to a questionnaire are given on ordinal Likert
scales, assuming a unique common rating measurement scale.

In most research and applied works, PLS-PM and other statistical techniques are
conventionally used for handling variables measured on ordinal scales. According to
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Likert’s original proposal, such a practice is consistent when the number of items is
large enough and it is widely accepted. However, many contributions have been recently
proposed in the PLS-PM framework aiming to treat the ordinal indicators in their own
nature (Betzin and Henseler, 2005; Jakobowicz and Derquenne, 2007; Lauro et al., 2011;
Russolillo, 2012).

Similarly to classical least squares regression, in PLS-PM the process of data analy-
sis is represented by the simple equation: data = model + error (Judd and McClelland,
2009). Here randomness represents the main source of uncertainty, i.e. random measure-
ment errors in collecting data. However, there are other sources of uncertainty besides
randomness (Coppi, 2008). When human judgments are involved in the data analysis
process, as in subjective measurement, vagueness is the major source of uncertainty
(Zadeh, 1973). Some examples, for instance, are represented by sensory analysis where
judges are the measurement tools, or consumer analysis where consumers express their
preferences, or social science where individuals are the subjects of the survey. Vague-
ness characterizes phenomena which are vague in their own nature, which means they
have no sharp definition. For instance, concepts such as satisfaction, trust, happiness
and stress, well define the underlying phenomenon, without quantifying it. That said,
this type of information codification is very common and more in line with the human
way of thinking than any other type of codification.

The present paper proposes the use of Partial Possibilistic Regression Path Modeling
(PPR-PM) (Romano and Palumbo, 2013) in the subjective measurement framework.

Following the PLS-PM approach, PPR-PM aims to explain at best the residual vari-
ance in any regression inside the model, but it is based on the use of possibilistic regres-
sion to model relations, which is geared to model vagueness rather than randomness.

Different approaches have been proposed to cope with vagueness in regression anal-
ysis. For sake of the simplicity they can be grouped into two broad categories: Fuzzy
Least Square Regression (FLSR) and Possibilistic Regression (PR). Two papers can be
considered seminal for each approach, while many others have proposed further devel-
opments.

Diamond’s papers (Diamond 1988, Diamond 1990) introduce the FLSR approach
(see also Coppi et al. 2006), which is closer to the traditional statistical approach. In fact,
following the Least Squares line of thought, the aim is to minimize the distance between
the observed and the estimated fuzzy data. This approach has been extended to the
interval data analysis (Blanco-Fernandez et al., 2011; Billard and Diday, 2000; Marino
and Palumbo, 2003) and to symbolic data analysis (see Lima Neto and de Carvalho,
2010).

The paper by Tanaka et al. (1982) and that by Tanaka (1987) introduced the PR
approach. We refer the reader to the book by Tanaka and Guo (1999) for an exhaustive
overview of possibilistic data analysis. In the perspective of this paper, it is worth noting
that in PR the error term is embedded in the interval parameters that model the vagueness
in the relation among the variables.

PPR-PM is a flexible methodology for analyzing phenomena characterized by com-



174 R. Romano and F. Palumbo4 R. Romano and F. Palumbo

plex structures of relations among the variables and where the vagueness is the major
source of uncertainty.

In PPR-PM the process of data analysis is represented by the equation: data = possi-
bilistic model. Unlike the classical statistical paradigm, where uncertainty is considered
an additional element to the deterministic relation among the variables, possibilistic re-
gression considers uncertainty as being reflected inside the model via the parameters.

In the following, we will first introduce the PR and then present the basic algorithm
of PPR-PM. A case study on a meta-cognitive questionnaire for teachers will be illus-
trated. The paper will end with the main conclusions and some open issues.

2. Methods

2.1. Possibilistic Regression

In a general framework, PR defines the relation between one dependent variable Y
and a set of P predictors X1,Xp, . . . ,XP through a linear function holding interval valued
coefficients:

Y = ω̃1X1 + . . .+ ω̃pXp + . . .+ ω̃PXP (1)

where ω̃p denotes the generic interval coefficient in terms of midpoint and spread:
ω̃p = {cp;ap}. There are no restrictive assumptions on the model. Unlike statistical
regression, the deviations between data and linear models are assumed to depend on
the imprecision of the parameters and not on measurement errors. This means that in
PR there is no external error component but the spread of the coefficients embeds all
uncertainty, such that PR minimizes the total spread of the interval coefficients:

min
ap

P

∑
p=1

(
N

∑
n=1

ap|xnp|

)
, ∀p = 1, . . . ,P (2)

under the following linear constraints:

P

∑
p=1

cpxnp +
P

∑
p=1

ap|xnp| ≥ yn,∀n = 1, . . . ,N,

P

∑
p=1

cpxnp −
P

∑
p=1

ap|xnp| ≤ yn,∀n = 1, . . . ,N.

(3)

satisfying the following conditions: i) ap ≥ 0, ii) cp ∈ R, iii) xn1 = 1. Constraints in (3)
guarantee the inclusion of the whole given data set in the estimated boundaries.

In a geometric view, where statistical units are represented as points in the ℜP+1

space, the optimal solution ensures the inclusion of the whole given data set in the esti-
mated boundaries with the minimum spread of parameters.
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Wang and Tsaur (2000) provided a suitable interpretation of the regression interval.
The basic idea was to find a representative value of the interval among the infinite values
enclosed within the interval boundaries. Let yn and yn be the lower and the upper bound
of the estimated value ỹ∗n. The authors proved that in models with symmetric coefficients
the mean value of ỹ∗n given by:

ym
n =

yn + yn

2

is equal to the value occurring with the higher possibility level and denoted by ỹ1
n. In

other words, ỹ1
n is the best representative value of the possibilistic interval and, more

generally, the regression line Ỹ 1 has the best ability to interpret the given data. Starting
from these results the following quantities were defined:

• Total Sum of Squares (SST)
a measure of the total variation of yn in ỹn

SST =
N

∑
n=1

(
yn − yn

)2
+

N

∑
n=1

(yn − yn)
2 (4)

• Regression Sum of Squares (SSR):
a measure of the variation of ỹ1

n in ỹ∗n

SSR =
N

∑
n=1

(
ỹ1

n − yn

)2
+

N

∑
n=1

(
yn − ỹ1

n
)2

(5)

• Error Sum of Squares (SSE):
an estimate of the difference when ỹ1

n is used to estimate yn

SSE = 2
N

∑
n=1

(
ỹ1

n − yn
)2

(6)

Thus, using 4 and 5, an index of confidence is built, which is similar to the traditional
R2 in statistics. The index is defined as: IC=SSR/SST, with 0 ≤ IC ≤ 1, and gives a
measure of the variation of Y between Y and Y . The higher the IC, the better the Ỹ 1

used to represent the given data. A high value of IC means that a well estimated PR is
modeled and can support a better prediction.

2.2. Partial Possibilistic Regression Path Modeling

Partial possibilistic regression path modeling (PPR-PM) is a method to analyze phe-
nomena whose description requires the analysis of a complex structure of relations
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among the variables inside the system, and where there is an additional source of com-
plexity arising from the involvement of influential human beings. This is achieved
by combining the principles of PLS-PM (Tenenhaus et al., 2005) and possibilistic re-
gression (Tanaka and Guo, 1999). A combination of possibilistic regression and path-
modeling was proposed by Palumbo and Romano (2008) and Palumbo et al. (2008) but
in these proposals the use of possibilistic regression was limited to model the relation-
ships among LVs. PPR-PM novelty consists in extending the approach to the whole path
model. However, the extension of the possibilistic approach to the entire model may be
an inappropriate choice in the context of subjective measures. Here, in fact, the items
used to measure attitudes and preferences often have a skewed distribution. Moreover,
the presence of outliers is very common in this context.

In this work, PPR-PM is thus further modified in order to obtain a more appropriate
method for the analysis of subjective data. The main idea is to use quantile regression
(Koenker and Basset, 1978; Davino et al, 2013) to model the relations between each LV
and its respective block of indicators. This choice allows us on the one hand to have a
robust measure of the latent variables, on the other to take into account the imprecision
inherent in systems where human estimation is influential and the observations cannot
be described accurately.

Let us assume P variables (p = 1, . . . ,P) observed on N units (n = 1, . . . ,N) and
collected into a partitioned table X = [X1,Xh, . . . ,XH ], where Xh is the generic block
composed by Ph indicators. In the PLS-PM literature, it is used to distinguish the struc-
tural model (or inner model) linking the LVs, and the measurement model (or outer
model) linking the LVs with their respective block of MVs. The measurement model
can be reflective or formative according to the linkage between the LVs and the MVs
(Tenenhaus et al. , 2005). In a reflective model the block of manifest variables related
to a latent variable is assumed to measure a unique underlying concept. In a formative
model, each manifest variable or each sub-block of manifest variables represents a dif-
ferent dimension of the underlying concept. Unlike the reflective model, the formative
model does not assume homogeneity nor unidimensionality of the block. PPR-PM only
focuses on the reflective model, which appears to be the appropriate model in the social
studies.

In PPR-PM, an iterative procedure permits estimation of the latent variable scores
and the outer weights, while path coefficients are obtained from possibilistic regressions
between the estimated latent variables.

The algorithm computes the latent variables’ scores alternating the outer and inner
estimation till convergence. The procedure starts on centered (or standardized) MVs
by choosing arbitrary weights wph. In the external estimation, the latent variable is
estimated as a linear combination of its own MV:

vh ∝
Ph

∑
p=1

wphxph = Xhwh (7)

where vh is the standardized outer estimation of the latent variable ξh and the symbol ∝
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means that the left-hand side of the equation corresponds to the standardized right-hand
side. In the internal estimation, the latent variable is estimated by considering its links
with the other adjacent H ′ latent variables:

ϑh ∝
H ′

∑
h′=1

ehh′vh′ (8)

where ϑh is the standardized inner estimation of the latent variable ξh and the inner
weights, according to the so called centroid scheme (Tenenhaus et al. , 2005), are equal
to the sign of the correlation between the outer estimate vh of the h-th latent variable and
the outer estimate of the h′ latent variable vh′ connected with vh.

These first two steps allow us to update the outer weights wph. The weight wph is
the regression coefficient in the quantile regression of the p-th manifest variable of the
h−th block xph on the inner estimate of the h-th latent variable ϑh:

xph = wphϑh + εph (9)

The quantile regression is an extension of the classical estimation of the conditional
mean to the estimation of a set of conditional quantiles (Koenker and Basset, 1978;
Davino et al, 2013):

Qθ (xph|ϑh) = ϑhwph(θ)+ εph (10)

where 0 < θ < 1, Qθ (.|.) denotes the conditional quantile function for the θ -th quantile.
In particular, PPR-PM considers only the case in which θ = 0.5, i.e. the median is the
single chosen quantile.

The algorithm iterates till convergence. After convergence, structural (or path) coef-
ficients are estimated through possibilistic regression among the estimated LVs:

ξ j = β̃0 j + ∑
h:ξh→ξ j

β̃h jξh (11)

where ξ j( j = 1, . . . ,J) is the generic endogenous (dependent) latent variable and β̃h j

is the generic interval path coefficient in terms of midpoint and range β̃h j = {ch j;ah j},
or equivalently [β

h j
,β h j] = [ch j ± ah j], interrelating the h-th exogenous (independent)

variable to the j-th endogenous one. The higher the midpoint coefficient the higher
the contribution to the prediction of the endogenouse LV, while the higher the spread
coefficient the higher the imprecision in the relation among the considered LVs.

An important aspect to note is that in PPR-PM the model can be valitad using the 
same criteria defined in the PLS-PM framework. In particular, this applies to the assess-
ment of the measurement model, which can be validated by means of the communality 
index (Tenenhaus et al., 2005). However, this reasoning cannot be extended to the 
validation of the structural model, and even less to the global model. The reason is that
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traditionally the various indexes used in the PLS-PM to validate these parts of the model
are based on the assessment of each individual structural equation measured by the R2

fit index. In PPR-PM each individual structural equation is modeled by possibilistic re-
gression which includes the error term in the parameters; thus no residuals are provided.
The quality of the model is here measured by the IC index presented in section (2.1).

3. An empirical evidence: the MESI questionnaire

The case study presents research carried out in the administrative area of Naples,
which has set itself the objective of investigating some dimensions that affect the quality
of teaching in high schools. In particular, we examined the motivational and emotional
aspects of teachers depending on the type of high school, their working position, gender
and the socio-cultural context in which the teacher operates. The tool used to conduct
this study was the questionnaire MESI (Motivation, Emotions, Strategies, Teaching)
(Moè et al., 2010), which consists of six scales that investigate job satisfaction, prac-
tices, teaching strategies, emotions, self-efficacy, and incrementally. The idea is that an
effective teacher is a teacher with a high sense of self-efficacy, satisfied with his work
and able to sustain himself through the activation of positive emotions in the workplace
and in his personal life. The questionnaire was administered to 216 teachers working
in high schools of the province of Naples. The high schools that joined the research
were 15, which were divided into three different categories: Liceo (5), Technical Insti-
tute (6) and Professional Institute (4). In the following, the focus will be only on some
of the scales composing the questionnaire: job satisfaction, emotions, and self-efficacy.
The first scale (satisfaction) is used to assess how job satisfaction is perceived from the
point of view of the teachers. It consists of five items on a 7-point Likert scale (1 =
strongly disagree, 7 = strongly agree). The second scale (emotions) is composed of two
subscales that each measures what emotions teachers experience when they teach (teach-
emotions) and what emotions they live in the role of teacher (role-emotions). The scale
is composed of a total of 30 items, each of which is constituted by a specific positive or
negative emotion, and for each the teacher’s frequency in experiencing the emotion is
recorded on a 5-point scale (1 =hardly ever, 5 = almost always). In this study, we will
focus only on the positive emotions measured by 13 items, the same for both subscales.
Finally, the third scale (self-efficacy) explores the perception of self-efficacy of teaching
by presenting a number of situations. Originally, it consisted of 24 items to which the
teacher must respond with a 9-point scale (1 = not at all, 9 = very much), how she/he
feels able to deal with certain situations. However, a reduced subset of items is used in
this study (9 items).

According to theoretical assumptions, we propose an empirical framework (see Fig-
ure 1) for analyzing the relationships among the subscales composing the MESI.

PPR-PM is adopted to check the research framework. Indicator reliability is assessed
by looking at the standardized loadings in Table 1, where it is shown that all indicators
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Figure 1. Structural model of the MESI questionnaire

are highly correlated with the respective constructs. To assess construct reliability, we
calculate Dillon-Goldstein’s ρ (DG.rho) and the communality indexes. As we show in
Table 1, both the DG.rho and the communality values of all constructs are above the
cut-off value of 0.7 and 0.5, respectively. That means in the first case that constructs
are homogeneous and in the second case that they capture on average 64%, 61%, 46%
and 50% of the variance of their indicators in relation to the amount of variance due to
measurement error. Consistent with the communality, the satisfaction scale presents the
highest loadings.

The results of the structural model are shown in Figure 2, where interval path coef-
ficients are reported in terms of midpoints and spreads.

As can be seen, there is no relation between satisfaction and self-accuracy, since the
path coefficient is equal to 0. Teach-emotions is positively related to satisfaction with a
path coefficient equal to 0.69, which means that when a teacher is satisfied he/she feels
more frequently positive emotions while teaching. Both satisfaction and teach-emotions
are good predictors of role-emotions, with path coefficients equal to 0.39 and 0.22, re-
spectively. In other words, when a teacher is satisfied he/she feels more frequently

Figure 2. Structural model results of the MESI questionnaire
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Table 1. Indicator and construct reliability.

LV MV standardized loadings DG.rho Communality
satisfaction item1 0.818 0.899 0.641

item2 0.743
item3 0.878
item4 0.834
item5 0.718

self-efficacy item1 0.713 0.934 0.608
item2 0.862
item3 0.721
item4 0.858
item5 0.749
item6 0.821
item7 0.777
item8 0.816
item9 0.675

teach-emotions item1 0.726 0.917 0.463
item2 0.762
item3 0.501
item4 0.568
item5 0.608
item6 0.562
item7 0.684
item8 0.680
item9 0.748
item10 0.796
item11 0.803
item12 0.743
item13 0.708

role-emotions item1 0.733 0.926 0.495
item2 0.738
item3 0.487
item4 0.499
item5 0.615
item6 0.620
item7 0.781
item8 0.726
item9 0.802
item10 0.767
item11 0.813
item12 0.830
item13 0.686
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positive emotions also in his/her role as a teacher. In addition, the increase in positive
emotions while teaching also increases positive emotions in the role of teacher. It is
worth noting that some relations indicate a certain imprecision. This holds for the re-
lationship between satisfaction and teach-emotions, whose path coefficient has a spread
equal to 0.23, and the relationship between the latter and the role-emotion, whose path
coefficient has a spread equal to 0.16.

In Table 2 the results of the PPR-PM are compared with those of the classical 
PLS-PM. In particular, the table shows the values of the path coefficients a nd o f the 
goodness of fit i ndexes. As can be seen, PPR-PM results are consistent with the results 
obtained on the classical single valued parameters model. The weak relationship be-
tween satisfaction and self-efficacy highlighted by a path coefficient close to zero in the 
PPR-PM approach, is underlined by the low value of the R2 index in PLS-PM. The co-
efficient between satisfaction and teach-emotions is very similar in the two approaches, 
but PPR-PM also provides information on the uncertainty of the relation. In other words, 
the spread of the coefficient shows that the variation in the opinions of the respondents 
with respect to these two scales is not sufficient to arrive at a  precise measurement of 
the dependent relationship between the two scales. Finally, both approaches show that 
role-emotions depend on the satisfaction and teach-emotions, but the PPR-PM approach 
highlights the fact that there is a greater margin of imprecision in the second relation 
(higher spread).

Table 2. PLS-PM and PPR-PM structural model results.

Relations PLS-PM path R2 PPR-PM path IC
satisfaction > self-efficacy 0.21 0.05 {0.0; 0.0} 0.77
satisfaction > teach-emotions 0.60 0.37 {0.69; 0.23} 0.88
satisfaction > role-emotions 0.27 0.59 {0.39; 0.0} 0.80
teach-emotions > role emotions 0.56 {0.22; 0.16}

4. Conclusion and Perspectives

The present work presented the use of PPR-PM in the context of subjective measure-
ment. After discussing the methodological aspects, the work has focused on a case study
and interpretation of the findings. It has been shown how the use of PPR-PM puts into
the light the component of the uncertainty inherent in subjective evaluations, in addition
to analyzing the relationship between latent concepts. On-going research concerns the
possibility of considering all structural equations simultaneously. This means the inter-
val path coefficients would be estimated by optimizing a single objective function based
on the spreads of all the coefficients inside the structural model. Another line of research
concerns the possibility of assessing the significance of the relationships through the use
of non-parametric procedures such as those generally used in the classical approach.
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Summary: Numerous methods are available for iteratively solving the maximum likeli-

hood estimating equations (MLEEs) for estimating the parameters of probit regression

models. Without a closed form solution of MLEEs, the exact theoretical properties of

estimators are unavailable and the asymptotic properties are only available. This paper

introduces five non-iterative methods Mu, u = 1,...,5, for approximately solving MLEEs

using the exact solutions for all possible pairs of observations and the exact solution

obtained by linear approximations of two weight functions in MLEEs. The method M5

is based on only the exact solutions for all possible pairs of observations and there is no

linear approximation is involved. The method M1 is based only on the linear approx-

imations with no pairs of observations method is used. The methods Mu, u=2,3,4, are

combinations of linear approximations and pairs of observations methods. The validity

of linear approximations is argued for the dose-response studies. Even in the situations

where linear approximations are not valid, the proposed method M5 prevails because

it does not depend on it. The estimators of parameters based on the proposed methods

permit us to establish their theoretical properties for evaluating the proposed methods.

Although the estimators of parameters by the proposed methods are not exact solutions

of MLEEs, their closed forms permit to establish the theoretical properties. A real-world

data is used to demonstrate the closeness of solutions of the proposed new methods with

that of the standard methods available in literature and statistical software. The sim-

ulation results demonstrate that the proposed method M3 performs far better than the

available methods in the literature with respect to the estimated mean squared error.
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2

1. Introduction

The logistic and probit regression models are two popular binary response models.

They are widely used in dose response modeling as for regression and classification

problems in bioinformatics, image analysis, disease detection and classification, pattern

recognition and numerous other situations. This paper addresses the probit modeling

while Ghosh and Banerjee (2010) addressed the logistic modeling. The probit model

was introduced in the pioneering paper by Bliss (1935) for analyzing binary response

data with an appendix by Fisher (1935) on the method of maximum likelihood estima-

tion. As probit models evolved from the dosage-mortality curve of Bliss to the numerous

modern statistics applications in the leading book by Finney (1952), the computational

advancement together with the theoretical and methodological progresses in Statistics

made the implementation more user friendly with respect to fitting probit models and

comparing them with other possible alternative binary response models (Albert and An-

derson, 1981; Dobson and Barnett, 2008; Morgan, 1992; Silvapulle, 1981; Wedderburn,

1974cf). However, some inherent impossibility remained present during the develop-

ment process, as no exact solution can be obtained for the MLEEs. This paper addresses

the fundamental complexity in the process leading to this particular inherent impossi-

bility for obtaining an exact solution with the understanding that various optimization

algorithms may be applied in order to maximize the likelihood. The simplicity in the pro-

cess is found by demonstrating two situations where the exact solutions for the MLEEs

can be obtained. The first situation arises when we consider only two observations re-

sulted from any two groups out of N groups. We call them as a pair of observations.

The total number of such pairs of observations is
(
N
2

)
. We start with a pair of observa-

tions where exact solutions of the MLEEs are available and then make repeated use of

this for all possible pairs of observations. All possible pairs of observations were con-

sidered for logistic regression models in Ghosh and Banerjee (2010). In this paper we

introduce the second situation as the local linear approximations of the weight functions

which provide exact solutions of the MLEEs. In our new proposed methods, we also

integrate all possible pairs of observations with local linear approximations for probit

regression models. We further compare the new methods with standard methods, which

are available for everyday implementation. Here presented methods do not need any

initial values as they are based on exact solutions on special situations. Furthermore, the

standard methods can use the solutions of the new methods as the initial values having

the proper scientific justification for the choice. In this sense, the standard method can

be blended with the proposed new methods.

The paper is organized as follows. In section 2 the model is defined and a simple

situation with two groups providing an exact solution of the MLEEs while reviewing
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the probit regression model is presented. Section 3 introduces the local linear approx-

imations of the weight functions, which are present in the estimating equations. Exact

solutions of the estimating equations are given. Five new non-iterative methods are pre-

sented for approximately solving MLEEs. In the fourth section the performances of the

proposed methods with the available standard methods for the Cornfield (1962) data are

compared. A simulation study is also presented in order to compare the performances

of the proposed methods with the standard methods. Tables 4 and 5 demonstrate that the

numerical values of the estimated mean squared errors for two parameters are smallest

for the method M3 in comparison to the other proposed methods. The detailed theory

behind the new methods is also given. Section 5 provides the final discussions and con-

clusions.

2. Probit Regression Model

In a probit regression model the observations for a response variable Y are generated

from a binary random variable which takes only one of two category of values on a unit:

yes (1) with probability pi and no (0) with probability 1 − pi. The observed value of Y

in the first category is the number of yes values and in the second category number of no

values on n units. In the study of the dependence of response variables Y on explanatory

variables X in N groups, the response variable for the ith group is denoted by Yi and

the corresponding explanatory variable by Xi for i = 1, ..., N. For the ith group with

ni units and xi as the fixed value of the explanatory variable Xi, the observed value

of response variable Yi in the first category is yi and the observed value in the second

category is ni − yi. The random variables Y1, ... , YN are independent. We have

E(Yi) = nipi, Var(Yi) = nipi(1 − pi), and Cov(Yi, Yi′) = 0, for i �= i′.

The N groups generate the observations as
(
yi, ni − yi; xi; i = 1, ..., N

)
. In the probit

regression model (Bliss, 1935; Finney, 1952; Dobson and Barnett, 2008; Morgan, 1992)

the probability pi is modeled by

pi
def
= Φ(α + βxi), (2.1)

where Φ(.) is the standard normal distribution function. The parameters α and β are

unknown and target of the maximum likelihood estimation procedure. Maximum likeli-

hood estimators provide asymptotically unbiased and efficient estimates. The likelihood

function is given by

L(α, β; y, n, x)
def
=

N∏

i=1

(
ni

yi

)(
Φ(α + βxi)

)yi
(

1 − Φ(α + βxi)

)ni−yi

. (2.2)
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The MLEEs are now obtained by taking the derivatives of the log−likelihood function

with respect to α and β and setting them equal to zero (Dobson and Barnett (2008),

Morgan (1992)).





N∑
i=1

yiA(α + βxi) −
N∑

i=1
niB(α + βxi) = 0,

N∑
i=1

yixiA(α + βxi) −
N∑

i=1
nixiB(α + βxi) = 0,

(2.3)

with the “weight” functions

A(u)
def
=

φ(u)

Φ(u)(1 − Φ(u))
, B(u)

def
=

φ(u)

1 − Φ(u)
. (2.4)

The function B(u) is known in statistics and econometrics literature as the inverse of

Mill’s Ratio (Mills, 1926). The function B(u) is also known in reliability analysis as

well as in survival analysis (Dobson and Barnett, 2008, p. 189) as the hazard function

for the special case of standard normal distribution.

The solutions for α and β of the MLEEs in (2.3) are denoted by α̂ and β̂. The

MLEEs in (2.3) provide the exact solutions for α and β when N = 2 in the sense

that the solutions have closed-form mathematical expressions. When N = 2 and the

observations are
(
yi, ni − yi; xi; i = 1, 2

)
, we get from (2.3)

p̂i
def
=

yi

ni

= Φ(α̂ + β̂xi), with E(p̂i) = pi, Var(p̂i) =
pi(1 − pi)

ni

, i = 1, 2. (2.5)

Exact solutions of the MLEEs in (2.3) are obtained from (2.5) as

α̂ =
x1Φ

−1( y2

n2
) − x2Φ

−1( y1

n1
)

x1 − x2
, β̂ =

Φ−1( y1

n1
) − Φ−1( y2

n2
)

x1 − x2
. (2.6)

When N > 2, the numerical solutions are obtained by using the available statistical

packages in R, SAS and numerous others. The methods used in the available statistical

packages are referred as the standard methods. Three criterion functions are chosen for

the standard method (SM) to minimize: -2log(Likelihood), Deviance, and Chi-square

using the iterative re-weighted least squares which are referred as SM(L), SM(D), and

SM(χ2). The likelihood function is given in (2.2). The expressions of Deviance (D)
and Chi-square (χ2) are given later in (3.5) of Section 3. The complexity of finding

numerical solutions of the MLEEs in (2.3) when N > 2 is circumvented in this paper by

introducing linear approximations of the functions A(u) and B(u) and alternatively by

harnessing the strength of exact solutions for α and β for all pairs of observations.
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We now consider two pairs p and p′ consisting each of two groups (i1, i2) and (i3,

i4). This provides the estimates:

yik

nik

def
= p̂

(p)
ik

, k = 1, 2, 3, 4,

α̂(p) =
xi1Φ

−1(p̂
(p)
i2

) − xi2Φ
−1(p̂

(p)
i1

)

xi1 − xi2

, α̂(p′) =
xi3Φ

−1(p̂
(p′)
i4

) − xi4Φ
−1(p̂

(p′)
i3

)

xi3 − xi4

,

β̂(p) =
Φ−1(p̂

(p)
i1

) − Φ−1(p̂
(p)
i2

)

xi1 − xi2

, β̂(p′) =
Φ−1(p̂

(p′)
i3

) − Φ−1(p̂
(p′)
i4

)

xi3 − xi4

.

The pairs p and p′ may or may not have a group in common. The
(

N

2

)
estimates of both

α and β can be calculated from
(

N

2

)
pairs of observations.

We now circumvent the complexity from A(u) and B(u) by introducing some ap-

proximations of A(u) and B(u). These approximations provide simplicity in finding

estimates for α and β when N > 2.

3. Linear Approximations of A(u) and B(u)

We observe that A(u) = B(−u) + B(u), A(−u) = A(u), and A(u) is symmetric

about 0. Moreover, A(u) ≥ 0 and B(u) ≥ 0. Figure 1 demonstrates the shapes of

A(u) and B(u) within the range −3 ≤ u ≤ 3. We have Φ(u) = 1
2 for u = 0, > 1

2 for

u > 0, and < 1
2 for u < 0. In a dose-response study, we are often interested only in

Φ(u) ≤ 1
2 and hence the values of u satisfying u ≤ 0. When we observe the proportion

killed or cure for a particular dose, the more than 50% is not good for the environment

or living beings. For this reason, we approximate A(u) and B(u) “locally” for u ≤ 0
instead of “globally” for all u. This could be a serious limitation in general but is an

acceptable constraint for a dose-response study. For simplicity, we implement only the

linear approximation in this paper. We approximate A(u) and B(u) for u ≤ 0 by

A(u) ≈ γ − δu, B(u) ≈ η + θu. (3.1)

The sample proportions
yi

ni
are ad hoc estimators of pi, i = 1, ..., N, in (2.1). If the

sample proportions are all smaller than 1
2 , then we find from (2.1) the support in favor

of u ≤ 0.
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Figure 1. Plots of A(u) and B(u) against u

We define





w1i = (δyi + θni), w2i = (γyi − ηni),

W =




N∑
i=1

w1i

N∑
i=1

w1ixi

N∑
i=1

w1ixi

N∑
i=1

w1ix
2
i




, ωωω =




N∑
i=1

w2i

N∑
i=1

w2ixi




, φφφ =

[
α

β

]
,

|W| =
N∑

i=1

w1ix
2
i

N∑
i=1

w1i − (
N∑

i=1

w1ixi)
2.

(3.2)

From (2.3), (3.1) and (3.2), we get

Wφφφ = ωωω. (3.3)
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Estimators of α and β are calculated for given values of γ, δ, η, and θ by:

[
α̂

β̂

]
def
= φ̂φφ

def
= W

−1ωωω = |W|−1




N∑
i=1

w1ix
2
i

N∑
i=1

w2i −
N∑

i=1

w1ixi

N∑
i=1

w2ixi

N∑
i=1

w1i

N∑
i=1

w2ixi −
N∑

i=1

w1ixi

N∑
i=1

w2i




. (3.4)

Approximate values of γ, δ, η, and θ are calculated in dependence of the given

observations. In the following section, we present five methods for calculating possible

values of γ, δ, η, and θ. These values are then treated as the known values in order to

obtain estimates α̂ and β̂ from (3.4).

We define




p̂i
def
= Φ(α̂ + β̂xi), ŷi

def
= nip̂i,

∆y
def
=

N∑
i=1

|yi − ŷi|, χ2 def
=

N∑
i=1

(yi−ŷi)
2

nip̂i(1−p̂i)
,

D
def
= 2

N∑
i=1

[
yilog

(
yi

ŷi

)
+ (ni − yi)log

(
ni−yi

ni−ŷi

)]
,

Ai
def
= A(α̂ + β̂xi), Âi

def
= γ − δ(α̂ + β̂xi), ∆A

def
=

N∑
i=1

|Ai − Âi|,

Bi
def
= B(α̂ + β̂xi), B̂i

def
= η + θ(α̂ + β̂xi), ∆B

def
=

N∑
i=1

|Bi − B̂i|.

(3.5)

The values of γ and δ that give a smaller value of ∆A represent a better linear approx-

imation of A in (3.1). Similarly the values of η and θ in ∆B for having a better linear

approximation of B in (3.1). The values of α̂ and β̂ that give overall smaller values

of ∆y , χ2, -2log L, and D represent a better fit of the probit regression model to the

observations.

3.1. Determining γ, δ, η, and θ

We now present five methods for determining values of γ, δ, η, and θ in (3.1).

Method 1: M1

We define u1i satisfying Φ(u1i) = yi

ni
, i = 1, ..., N. Assuming u1i ≤ 0, i = 1, ..., N,

we fit a least squares line through the points (u1i, A(u1i)) to determine the values γ̃1

and −δ̃1 as the estimated intercept and slope of the line. We also fit a least squares

line through the points (u1i, B(u1i)) to determine the values η̃1 and θ̃1 as the estimated

intercept and slope of the line. With the numbers γ̃1, δ̃1, η̃1, and θ̃1 we now get with

formula (3.4) estimates α̂1 and β̂1 of the parameters α and β.
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Method 2: M2

We choose a pair of observations for two values of i in
(
yi, ni−yi; xi; i = 1, ..., N

)
. We

call this pair p where p = 1, ...,
(

N

2

)
. We now get from (2.6) the values of α̂ and β̂ for the

pth pair, denoted by α̂(p) and β̂(p). We define u
(p)
2i = α̂(p)+β̂(p)xi, i = 1, ..., N. Assum-

ing u
(p)
2i ≤ 0, i = 1, ..., N, we fit a least squares line through the points (u

(p)
2i , A(u

(p)
2i ))

to determine the values γ̃
(p)
2 and −δ̃

(p)
2 as the estimated intercept and slope of the line.

We also fit a least squares line through the points (u
(p)
2i , B(u

(p)
2i )) to determine the val-

ues η̃
(p)
2 and θ̃

(p)
2 as the estimated intercept and slope of the line. The determined values

γ̃
(p)
2 , δ̃

(p)
2 , η̃

(p)
2 , and θ̃

(p)
2 are now applied in order to obtain the vector φ̂

(p)
using equa-

tion (3.4). We select the best pair that gives overall small values of ∆y , χ2, -2log L, and

D in (3.5). The values α̂2 and β̂2 for the best pair are now taken as the estimates for α

and β.

Method 3: M3

We follow Method 2 to obtain the determined values γ̃
(p)
2 , δ̃

(p)
2 , η̃

(p)
2 , and θ̃

(p)
2 for the

pair p of observations, p = 1, ...,
(

N

2

)
. We denote

γ̃3 =
1(
N

2

)
(N
2)∑

p=1

γ̃
(p)
2 , δ̃3 =

1(
N

2

)
(N
2)∑

p=1

δ̃
(p)
2 , η̃3 =

1(
N

2

)
(N
2)∑

p=1

η̃
(p)
2 , θ̃3 =

1(
N

2

)
(N
2)∑

p=1

θ̃
(p)
2 .

With the values γ̃3, δ̃3, η̃3, and θ̃3 we get using formula (3.4) α̂3 and β̂3 as the estimates

for α and β.

Method 4: M4

We follow Method 2 to find the vectors φ̂
(p)

, p = 1, ...,
(

N

2

)
from (3.4). The elements of

the vectors φ̂
(p)

, p = 1, ...,
(

N

2

)
, from (3.4) are denoted by α̂(p) and β̂(p). We denote

α̂4 =
1(
N

2

)
(N

2)∑

p=1

α̂(p), β̂4 =
1(
N

2

)
(N

2)∑

p=1

β̂(p).

The α̂4 is chosen as the estimate for α and β̂4 is chosen as the estimate for β.

Method 5: M5

We follow Method 2 to obtain from (2.6) the values of α̂(p) and β̂(p), p = 1, ...,
(

N

2

)
. We

denote

α̂5 =
1(
N

2

)
(N
2)∑

p=1

α̂(p), β̂5 =
1(
N

2

)
(N
2)∑

p=1

β̂(p).
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The α̂5 is chosen as the estimate for α and β̂5 is chosen as the estimate for β.

The above five methods are notably different in their arriving at the estimates of α

and β. The method M5 makes use of the exact solutions in (2.6) for pairs of observations

but not the linear approximations in (3.1). The method M1 does exactly the opposite.

The methods M2, M3, and M4 blends the linear approximations with the exact solutions

for pairs of observations in three different ways.

4. Empirical Evidence with Real and Simulated Data

This section compares the methods M1−M5 with a real data before presenting the

simulation results.

4.1. Real Data

The Cornfield data given in Cornfield (1962) were obtained from blood pressure

measurements of male subjects within the age-group 40 to 59. The male subjects were

divided into eight groups representing distinct blood pressure ranges (N = 8). For the

ith group, the number of male subjects (ni), the number of subjects with heart disease

(yi), and the number of subjects without any heart disease (ni − yi) were observed.

The mid-values of blood pressure ranges were taken as the values of xi, i = 1, ..., 8 for

the analysis. The mid-values of blood pressure ranges 117−126, 127−136, 137−146,

147−156, 157−166, and 167−186 are 121.5, 131.5, 141.5, 151.5, 161.5, and 176.5 re-

spectively, with their first consecutive difference between 121.5 and 131.5 as 10 and the

last difference between 161.6 and 176.5 as 15. The mid-value for < 117 is taken as

121.5 - 10 = 111.5 and for ≥ 187 is taken as 176.5 + 15 = 191.5. The collected data are

displayed in Table 1. Note that the sample proportions, yi

ni
, i = 1, ..., 8, for the Cornfield

data are all smaller than 1
2 , such that one might assume u ≤ 0.

The here presented estimation methods M1,...,M5 and the standard methods SM(L),
SM(D), and SM(χ2) are used for estimating parameters α and β defining the proba-

bility of heart diseases in dependence on the blood pressure. The resulting estimates

and the values of the optimality criteria ∆y,−2logL, D, and χ2 are presented in Table

2. The method M1 gives the smallest, M5 the second smallest, and SM(χ2) the largest

value of ∆y . The ∆y values of M4, SM(L), and SM(D) are very close to each other.

The values for M2 and M3 are also very close. The methods M1, M5, and SM(χ2)
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Table 1. The Cornfield Data

i 1 2 3 4 5 6 7 8

ni 156 252 284 271 139 85 99 43

yi 3 17 12 16 12 8 16 8

ni − yi 153 235 272 255 127 77 83 35

xi 111.5 121.5 131.5 141.5 151.5 161.5 176.5 191.5
yi

ni
0.019 0.067 0.042 0.059 0.086 0.094 0.162 0.186

Table 2. The methods M1, M2, M3, M4 and M5 versus SM(L), SM(D), and SM(χ2)

(α̂, β̂) ∆y −2logL D χ2

M1 (-3.24837, 0.01223) 16.45 38.99 6.28 7.14

M2 (-3.11237, 0.01143) 17.93 38.83 6.13 6.50

M3 (-3.11827, 0.01145) 17.85 38.84 6.14 6.56

M4 (-3.17931, 0.01184) 17.20 38.83 6.13 6.71

M5 (-3.36549, 0.01322) 16.77 38.98 6.28 7.06

SM(L) (-3.19699, 0.01205) 17.17 38.76 6.06 6.51

SM(D) (-3.19699, 0.01205) 17.17 38.76 6.06 6.51

SM(χ2) (-3.07957, 0.01136) 18.63 38.94 6.24 6.31

Table 3. The values ∆A and ∆B for the methods M1, M2, and M3

∆A ∆B

M1 0.12307 0.09250

M2 0.10474 0.07852

M3 0.12241 0.08265
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give large, SM(L) and SM(D) small values for −2logL and D. The values for methods

M2, M3, and M4 fall in between the large and small values. The methods M1 and M5

give large, SM(χ2) the smallest, and M4 in between values of χ2. The values for the

methods M2, M3, SM(L), and SM(D) are closer to the smallest value of SM(χ2) than

the largest value of M1. The values of ∆A and ∆B presented in Table 3 demonstrate

the goodness of linear approximations of A(u) and B(u). They are given only for the

pertinent methods M1, M2, and M3. The linear approximations for method M2 perform

better than the other two methods.

4.2. Simulation

In the Cornfield data, the “true” values of the parameters α and β defining the proba-

bility of heart diseases in dependence on the blood pressure are unknown. Consequently,

we have compared the closeness of estimates of α and β obtained by our methods M1,

M2, M3, M4, and M5 to the values obtained from SM(L), SM(D), and SM(χ2). We

now perform a simulation study with the given values of α = −3.2 and β = 0.01 and

the same number of groups with sample sizes ni and explanatory variables xi as in Table

1. Then we use the program R to randomly generate yi values for the probit regression

model in the setup of Cornfield data. For this simulated data, the estimates α̂ of α and β̂

of β are obtained by the proposed methods as well as the standard methods. We gener-

ate 100,000 samples of this simulated data in order to get insight in the behavior of the

different estimators for the parameters α and β. The summary statistics of the 100,000

values of (α̂ + 3.2) are then calculated. Similarly for the 100,000 values of (β̂ − 0.01)
are also calculated.

Table 4 presents the values of B̂ias(α̂), V̂ar(α̂), and M̂SE(α̂) for the proposed meth-

ods M1−M5 as well as SM(L), SM(D), and SM(χ2). Table 5 presents the similar

values of B̂ias(β̂), V̂ar(β̂), and M̂SE(β̂). On the one hand the method M3 gives the

smallest values of M̂SE(α̂), M̂SE(β̂), V̂ar(α̂), and V̂ar(β̂) in comparison with M1, M2,

M4, M5, SM(L), SM(D), and SM(χ2). On the other hand the method M3 gives the

larger values of B̂ias(α̂) and B̂ias(β̂) in comparison to SM(L), SM(D), and SM(χ2).

Again, on the one hand the smaller values of M̂SE(α̂) and M̂SE(β̂) are provided by

the methods M2 and M4 than the methods SM(L) and SM(D) while on the other hand

the smaller value of M̂SE(α̂) is provided by the method SM(χ2) than the methods M2

and M4. The method M4 gives a value of M̂SE(β̂) smaller than the methods SM(L),
SM(D), and SM(χ2). The methods M1 and M5 perform poorly in comparison to all

the other methods. Overall, the method M3 performs better than the standard methods

SM(L), SM(D), and SM(χ2) with respect to M̂SE and V̂ar but the standard methods

perform better over M3 with respect to B̂ias. The criterion MSE has turned out to be
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Table 4. The values of B̂ias(α̂), V̂ar(α̂), and M̂SE(α̂) for the proposed methods M1−M5,

SM(L), SM(D), and SM(χ2)

dBias(α̂)

q
cVar(α̂) dMSE(α̂)

M1 -0.06209 0.51349 0.26753

M2 0.00960 0.43139 0.18619

M3 0.06204 0.40639 0.16900

M4 -0.02041 0.42729 0.18299

M5 -0.02227 0.48936 0.23997

SM(L) -0.00198 0.44081 0.19432

SM(D) -0.00198 0.44081 0.19432

SM(χ2) 0.02049 0.42494 0.18099

Table 5. The values of B̂ias(β̂), V̂ar(β̂), and M̂SE(β̂) for the proposed methods M1−M5,

SM(L), SM(D), and SM(χ2)

dBias(β̂)

q
cVar(β̂) dMSE(β̂)x10−5

M1 0.00017 0.00340 1.15889

M2 -0.00010 0.00295 0.87125

M3 -0.00067 0.00275 0.80114

M4 -0.00009 0.00288 0.83025

M5 -0.00003 0.00338 1.14253

SM(L) -0.00003 0.00301 0.90610

SM(D) -0.00003 0.00301 0.90610

SM(χ2) -0.00002 0.00290 0.84104

important and meaningful to focus on because a major reduction in variance is achieved

at the cost of allowing a small bias. The method M3 is precisely achieving this for es-

timating the parameters α and β. In the regression model parameter estimation by the

method of ridge regression, the similar situations arise as noted on page 5 in the paper

by Marquardt and Snee (1975). See also the article by Hoerl and Kennard (2000). As in

the ridge regression, the MSE provides a meaningful comparison of the biased estimates

in this simulation study by considering both bias and variance in a combined form.
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5. Discussions and Conclusions

Exact solutions of MLEEs are demonstrated for the probit regression model for pairs

of observations as well as considering local linear approximations of the weight func-

tions A(u) and B(u) for the MLEEs. The proposed methods M1, M2, M3, M4, and M5

make use of exact solutions of either pairs of observations or the linear approximations.

The standard methods are iterative methods and require the choice of initial values for

the unknown parameters α and β. The estimates provided by the proposed methods

give reasonable choices of initial values for the standard methods. The Cornfield data

demonstrate that the performance of proposed methods are comparable to the standard

methods. The methods M2, M3, and M4 perform in the Cornfield example better than

the methods M1 and M5 with respect to the criterion functions −2logL, D, and χ2,

whereas the methods M1 and M5 perform best with respect to the criterion function

∆y. Simulation results also demonstrate that the proposed method M3 is better than

the standard methods as well as the other proposed methods with respect to M̂SE. The

attractions of the proposed methods are their simplicity, that they are non-iterative, and

that they make use of pairs of observations or linear approximations with exact solutions.

Both for the real and simulated data, the number of groups is N = 8. In the simulation,

one could consider many other possible values of N to evaluate the performance of pro-

posed methods relative to the standard methods.

Appendix A. Standard Errors of α̂ and β̂

It follows from (2.4) that

B(−u) =
φ(u)

Φ(u)
, A(u) = A(−u) = B(u) + B(−u). (A.1)

The proposed local linear approximations of A(u) and B(u) in (3.1) are valid only for u ≤ 0.

Therefore, the local approximation B(u) = η + θu in (3.1) cannot be used for calculating the

local approximation A(u) = γ − δu in (3.1) by the formula in (A.1).

Appendix A.1. Methods M1, M2, and M3

We now denote α̂ and β̂ in (3.4) by

α̂
def
= h1(y1, ..., yN), β̂

def
= h2(y1, ..., yN). (A.1.1)

The first order Taylor series approximations of α̂ and β̂ in (A.1.1) about (n1p1, ..., nNpN) are
(

α̂ � a∗
0 + a1

n1
(y1 − n1p1) + ... + aN

nN
(yN − nNpN) = a0 + a1

n1
y1 + ... + aN

nN
yN,

β̂ � b0 + b1
n1

y1 + ... + bN

nN
yN,

(A.1.2)
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where, for i = 1, ...,N,

a∗
0 = h1(n1p1, ..., nNpN), a0 = a∗

0 − a1p1 − ... − aN pN ,

b∗0 = h2(n1p1, ..., nNpN), b0 = b∗0 − b1p1 − ...− bNpN ,
ai

ni
= ∂

∂yi
h1(y1, ..., yN)

˛̨
˛
(n1p1,...,nN pN)

, bi

ni
= ∂

∂yi
h2(y1, ..., yN)

˛̨
˛
(n1p1,...,nN pN)

.

The first order approximations of expectations, variances, and standard errors (SEs) of α̂ and β̂

are 8
>>>>>>><
>>>>>>>:

E(α̂) � a0 +
P

N

i=1 aipi, E(β̂) � b0 +
P

N

i=1 bipi,

Var(α̂) �
P

N

i=1

a2
i

ni
pi(1 − pi), Var(β̂) �

P
N

i=1

b2i
ni

pi(1− pi),

p̂i
def
= Φ(α̂ + β̂xi), i = 1, ...,N,

cVar(α̂)
def
=

P
N

i=1
a2

i

ni
p̂i(1 − p̂i), cVar(β̂)

def
=

P
N

i=1
b2i
ni

p̂i(1− p̂i),

SE(α̂) �
q

cVar(α̂), SE(β̂) �
q

cVar(β̂).

(A.1.3)

An expansion of Φ(u) is given by

Φ(u) =
1

2
+

1√
2π

„
u − u3

3 · 2
+

u5

5 · 2! · 22
− u7

7 · 3! · 23
+ ...

«
.

A first order approximation of this expansion provides:

Φ(u) � 1

2
+

1√
2π

u ⇒ pi = Φ(α + βxi) �
1

2
+

1√
2π

(α + βxi),

such that with the approximation of the expectation in (A.1.3) follows:
8
>><
>>:

E(α̂) �
„

a0 + 1
2

NP
i=1

ai

«
+ 1√

2π

„
NP

i=1

ai

«
α + 1√

2π

„
NP

i=1

aixi

«
β,

E(β̂) �
„

b0 + 1
2

NP
i=1

bi

«
+ 1√

2π

„
NP

i=1

bi

«
α + 1√

2π

„
NP

i=1

bixi

«
β.

We have the theorem below:

Theorem 1. If the conditions below hold for α̂ and β̂ in (A.1.2)

a0 +
1

2

NX

i=1

ai = 0,

NX

i=1

ai =
√

2π, b0 =

NX

i=1

bi = 0,

NX

i=1

aixi = 0,

NX

i=1

bixi =
√

2π,

then E(α̂) � α and E(β̂) � β.

Theorem 1 is applicable for the methods M1, M2, and M3 which are based on formula (3.4).

Consequently, the ai’s and bi’s in (A.1.2) depend on the values of γ, δ, η and θ. The values of

γ, δ, η, and θ satisfying the conditions of Theorem 1 reduce the bias in α̂ and β̂. The determined

values of γ, δ, η, and θ for the Cornfield data are given in Table 6 for the methods M1, M2, and

M3.

The values of γ and η

γ = A(0) =
4√
2π

, η = B(0) =
2√
2π

,

are not the best compared to their values obtained by our methods for the local approximation

(3.1).
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Table 6. The determined values of γ, δ, η, and θ by M1, M2, and M3 for the Cornfield
data

γ δ η θ

M1 1.20091 0.59886 0.52265 0.24495

M2 1.23449 0.57080 0.54820 0.26628

M3 1.24603 0.56829 0.55142 0.26743

Appendix A.2. Methods M4 and M5

In this subsection we consider the pairs of observations p, p = 1, ...,
`

N

2

´
, for the methods M4

and M5. The α̂(p)’s for the method M4 are correlated with each other and the same is true for

β̂(p)’s. Denoting the ai and bi in (A.1.2) for the pair p by a
(p)
i and b

(p)
i , i = 1, ...,N, we get for

two pairs p and p′

8
<
:

Cov(α̂(p), α̂(p′)) �
P

N

i=1

a
(p)
i

a
(p′)
i

ni
pi(1 − pi),

Cov(β̂(p), β̂(p′)) �
P

N

i=1

b
(p)
i

b
(p′)
i

ni
pi(1− pi).

We now present the approximate standard errors of α̂4 and β̂4 for the method M4:

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

p̂
(4)
i

def
= Φ(α̂4 + β̂4xi), i = 1, ...,N,

dCov(α̂(p), α̂(p′))
def
=

P
N

i=1

a
(p)
i

a
(p′)
i

ni
p̂
(4)
i (1 − p̂

(4)
i ),

dCov(β̂(p), β̂(p′))
def
=

P
N

i=1

b
(p)
i

b
(p′)
i

ni
p̂
(4)
i (1− p̂

(4)
i ),h`N

2

´i2 cVar(α̂4) �
P(N

2)
p=1

P(N
2)

p′=1
dCov(α̂(p), α̂(p′)),h`N

2

´i2 cVar(β̂4) �
P(N

2)
p=1

P(N
2)

p′=1
dCov(β̂(p), β̂(p′)),

SE(α̂4) =
p

cVar(α̂4), SE(β̂4) =
p

cVar(β̂4).

The α̂(p)’s for the method M5 are uncorrelated with each other if the pairs do not have any

groups in common and are correlated with each other if the pairs have one group in common. The

same is true for the β̂(p)’s. If a pair p consists of two groups i1 and i2 giving p̂
(p)
i1

and p̂
(p)
i2

and

another pair p′ consists of two groups i1 and i3 giving p̂
(p′)
i1

and p̂
(p′)
i3

, then we get from (2.6)

8
>><
>>:

Cov(α̂(p), α̂(p′)) �
x2

i1
Cov

„

Φ−1(p̂
(p)
i2

),Φ−1(p̂
(p′)
i3

)

«

(xi1
−xi2

)(xi1
−xi3

)
,

Cov(β̂(p), β̂(p′)) �
Cov

„

Φ−1(p̂
(p)
i1

),Φ−1(p̂
(p′)
i1

)

«

(xi1
−xi2

)(xi1
−xi3

)
.

If a pair p consists of two groups i1 and i2 and another pair p′ consists of two groups i3 and i4,

then we get from (2.6)

Cov(α̂(p)
, α̂

(p′)) = Cov(β̂(p)
, β̂

(p′)) = 0.
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We now present the approximate standard errors of α̂5 and β̂5 for the method M5:

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

h`N
2

´i2

Var(α̂5) �
P(N

2)
p=1

P(N
2)

p′=1 Cov
“
α̂(p), α̂(p′)

”
,

ˆ`
N

2

´˜2
Var(β̂5) �

P(N
2)

p=1

P(N
2)

p′=1 Cov
“
β̂(p), β̂(p′)

”
,

p̂
(5)
i

def
= Φ(α̂5 + β̂5xi), i = 1, ...,N,

cVar(α̂5)
def
=

h
Var(α̂5) with pi = p̂

(5)
i , i = 1, ..., N

i
,

cVar(β̂5)
def
=

h
Var(β̂5) with pi = p̂

(5)
i , i = 1, ..., N

i
,

SE(α̂5) =
p

cVar(α̂5), SE(β̂5) =
p

cVar(β̂5).
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Summary: The Functional Assessment of Chronic Illness Therapy - Treatment Satisfac-
tion - Patient Satisfaction (FACIT-TS-PS) is a measure for assessing the quality of care
and satisfaction in chronically ill patients. Validity of the multi-dimensional structure
and reliability of the FACIT-TS-PS were investigated in a sample of 431 chronically ill
patients, using Confirmative Factor Analysis (CFA) and CUB models. Integrated use
of CUB models and CFA resulted in a satisfactory structure, leading to confirmation of
the original, reliable, seven-factor structure, even with a reduction in items from 25 to
15. The FACIT-TS-PS appears to be a practical instrument that is reliable and has good
construct validity.
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1. Introduction

The first aim of this study was to validate an Italian version of the Functional Assess-
ment of Chronic Illness Therapy - Treatment Satisfaction - Patient Satisfaction (FACIT-
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TS-PS), which measures quality of care and patient satisfaction in patients with different
types of chronic illness. A second, methodological, aim concerned the proposal of a
new approach to validation, including a sequential use of Confirmative Factor Analysis
(CFA) and CUB models. CFA is a type of Structural Equation Models that deals with
the measurement model, that is the relationships between observed measures or indica-
tors and latent variables or factors (Brown, 2006). Since the early 80s, CFA has become
one of the most commonly used statistical procedures in applied research (Cole, 1987;
Floyd and Widaman, 1995). Piccolo (2003) proposed CUB models, mainly motivated
by psychological arguments. In these models, the answers to ordinal response items in
a questionnaire are interpreted as the result of a cognitive process in which judgement is
intrinsically continuous but is expressed in a discrete way within a prefixed scale of m
categories. The rationale for this approach stems from interpretation of the final choices
of respondents because of a complex mechanism whose main components are the feel-
ing of the subject toward the item and an intrinsic uncertainty in choosing the ordinal
value of the response (Iannario and Piccolo, 2012). The paper is organized as follows.
Section 2 introduces the methods. Section 3 presents the instrument. Section 4 reports
results, and Section 5 draws conclusions.

2. Methods

First a Confirmative Factor Analysis (CFA) is performed using AMOS software (Ar-
buckle, 2005). Differently from Explorative Factor Analysis, CFA has an hypothesis-
driven nature: it must be based on an evidence-based theory which defines a model,
a hypothesis about (a) the number of factors, (b) whether the factors are correlated or
uncorrelated and (c) how items are associated with the factor (Santor et al., 2011). CFA
is almost always used during the process of a scale validation or a translation into a dif-
ferent language or culture (Lai, Crane and Cella, 2006; Al-Shair et al., 2012). In this
context CFA is used in validating the dimensional structure of a measure (factors) and
the patterns of item-factor relationship (factor loadings). When the latent structure is
multifactorial, CFA allows to understand how a test must be scored using sub-scales or
using a total score. Recently CFA has been used in scale validation in addition to other
statistical methods (e.g., Rasch Analysis - Krgeloh, 2012).
The 25 items are the observed variables of the model; the seven factors extracted are
the latent variables. The maximum likelihood method is selected to test the model. To
assess the fit of the model, the comparative fit index (CFI; Bentler, 1990) ) and the root
mean square error of approximation (RMSEA) are used (Browne and Cudeck, 1993).
Next, the saturation coefficients among items and the latent variables are examined. To
show that the items contribute to the model, they first must be saturated only on the
expected factor and their coefficient of saturation must be significant.

In order to understand if a more parsimonious version of the instrument could be
developed, the CUB model is applied. CUB models are a class of statistical models
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introduced by Piccolo (2003) for the specific purpose of interpreting and fitting ordinal
responses. They are interpreted as a result of two components: feeling and uncertainty.
The first component is expressed by a shifted binomial random variable. The second
component is expressed by a uniform random variable. The two components are com-
bined linearly in a mixture distribution. Let R be a random variable that assumes m
possible categories, r = 1, 2, 3, . . . ,m. Formally, the probability distribution of the
CUB model is given by:

Pr(R = r) = π

(
m− 1

r − 1

)
ξm−r(1− ξ)r−1 + (1− π)

1

m
, r = 1, 2, . . . ,m . (1)

Since the distribution is well defined when parameters π ∈ (0, 1] and ξ ∈ [0, 1], the
parametric space is the (left open) unit square:

Ω(π, ξ) = {(π, ξ) : 0 < π ≤ 1, 0 ≤ ξ ≤ 1} .

Iannario (2010) proved that such a model is identifiable for any m > 3.
From an interpretive point of view, (1 − ξ) may be understood as a measure of the

feeling of the respondent toward the item, whereas (1 − π) reflects uncertainty in the
final judgement.

To improve the performance of this structure, an extension of the CUB model with
covariates was proposed (Iannario, 2007; Piccolo and D’Elia, 2008). If q covariates are
introduced for explaining feeling, the probability distribution of the CUB model, now
indicated by CUB(0, q) is:

Pr(Ri = r | wi) = π

(
m− 1

r − 1

)
ξm−r
i (1−ξi)

r−1+(1−π)

(
1

m

)
, r = 1, 2, . . . ,m;

(2)
where

ξi =
1

1 + e−(γ0+γ1 w1i+···+γq w1q)
,

for any i = 1, 2, . . . , n, the symbols wi1, wi2, . . . , wiq denote the observation on the
covariates of the i-th subject selected to explain ξi.
For a positive increasing wik, k = 1, 2, ..., q (all other things being equal), we see that
feeling (1− ξ) decreases for γk > 0, and it increases for γk < 0.
Asymptotic statistical inference for CUB models has been developed by Piccolo (2006);
an effective EM procedure for maximum likelihood estimators has been implemented,
and a program in R is freely available (Iannario and Piccolo, 2012).
CUB models are also a potentially useful tool to measure importance of ordinal vari-
ables on an overall satisfaction variable in a customer/user/patient satisfaction survey
(Cugnata and Salini, 2013).
We proposed to use CUB models to validate the questionnaire. That is, we proposed to
use CUB models to select only the significant items for each dimension and to obtain a
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more parsimonious version of the instrument. We estimated a CUB model with overall
satisfaction as a dependent variable and satisfaction with items as covariates to explain
feeling, and we used a stepwise strategy using the p-values of Wald or likelihood ratio
(LR) tests to select only the significant covariates. We used a stepwise algorithm to
select the best CUB(0,q) model with covariates to explain feeling:

Step 1. Start with a model with no predictors, the CUB(0,0) model.

Step 2. For every variable eligible for inclusion, estimate the CUB model with a covari-
ate and calculate its corresponding significance based on LR or Wald.

Step 3. Choose the variable with the smallest significance value. If this value is less than
a probability threshold, then add it to the model; otherwise stop the stepwise
algorithm.

Step 4. Update the current model by adding a new variable. Calculate LR or Wald statis-
tic for each variable in the current model and then calculate its corresponding
significance. Choose the variable with the smallest significance.

Step 5. At each step after adding a variable, try to eliminate any variable that is not
significant at some level.

Step 6. Continue until every remaining variable is significant at cut-off level and every
excluded variable is insignificant, or until the variable to be added is the same
as the last deleted variable.

3. The instrument

The FACIT-TS-PS is part of the Functional Assessment of Chronic Illness Therapy
(FACIT) Measurement System, which is a comprehensive, extensive set of self-report
instruments for the assessment of health-related quality of life (QOL) in patients with
cancer or other chronic illnesses. (Cella, 1997). The measurement system, under devel-
opment since 1987, began with the creation of a generic CORE questionnaire called the
Functional Assessment of Cancer Therapy-General (FACT-G) targeted to the manage-
ment of chronic illness. ”FACIT” (Functional Assessment of Chronic Illness Therapy)
was adopted as the formal name of the measurement system in 1997 to portray the
expansion of the familiar ”FACT” (Functional Assessment of Cancer Therapy) ques-
tionnaires into other chronic illnesses and conditions. Most FACIT measures have un-
dergone a standard scale development and validation methodology, which takes place
in four phases: item generation, item-reduction, scale construction, and psychometric
evaluation (Webster et al, 2003).
This specific version FACIT-TS-PS was developed to assess patients perception of qual-
ity of care and related satisfaction in health care services for the chronically ill. The
FACIT-TS-PS has not been published in Italy yet and, to our knowledge, there are no
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validation articles for the English version, except an unpublished draft (authored by Eliz-
abeth Hahn), which shows means and dimensions of the instrument on a sample of 51
patients (HIV and cancer) and a conference presentation.

The FACIT-TS-PS is a 25-items instrument, subdivided into seven core quality-of-
care domains:
A. Explanations (four items) received about their illness
B. Interpersonal (three items) relations with health care personnel (physicians and nurses)
C. Comprehensive (three items) care in term of ability of multi-professional team, as a
whole, to be responsible for all aspects of the disease, including the impact on personal
life, relationships and work
D. Technical quality (three items) competence of physicians
E. Decision making (five items) patients involvement in care decisions
F. Nurse (three items) competence of nurses
G. Trust (four items) in physicians

Patients were required to evaluate the items on a four-point scale (0 = No, not at all;
1 = Yes, but not as much as I wanted; 2 = Yes, almost as much as I wanted; 3 = Yes, as
much as I wanted).
In addition, the FACIT-TS-PS includes a three-item overall measure. The first (referred
to as the recommendation item) asked patients if they would recommend the hospital to
others, the second (referred to as the repeat choice item) asked patients if they would
choose the same clinic or office again. Both of these items were on a three-point scale
(with possible response categories of yes, maybe, and no). The third item (referred to as
the satisfaction item) asked patients to rate their overall evaluation of care on a five-point
scale (with response categories of poor, fair, good, very good, and excellent).
Compared to the original version of the instrument, the Italian version introduced two
differences: it asked all patients to limit their answers to the last six months of service
or health care at the clinic instead of letting them choose visits to rate or rating their
experience in general; it skipped the repeated choice item, as some of the clinics or
wards involved were the unique centre of reference for treating certain diseases.

4. Results

4.1. Descriptive statistics

Table 1 presents basic characteristics of respondents. Half of the respondents were
male, and more than a quarter were older than 60. About 60% of respondents had a low
educational level and almost half had a full-time job.
Table 2 shows the frequency distribution of the two response variables Recommendation
and Satisfaction. The first has three response categories, the second five. The associa-
tion between these two variables is quite strong as indicated by the Goodman-Kruskal
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gamma coefficient equal to 0.8.

Table 1. Basic characteristics of respondents (n = 431)

Characteristic Value Frequencies (%)
Illness Cardiology 53 (12.3%)

Oncology 24 (5.57%)
Endocrinology 73 (16.94%)
Neurology 79 (18.33%)
Immunology 33 (7.66%)
Haematology 110 (25.52%)
Nephrology 27 (6.26%)
Other chronic diseases 32 (7.42%)

Sex Male 217 (50.47%)
Female 213 (49.53%)

Age (years) ≤30 17 (3.94%)
31 to 40 47 (10.9%)
41 to 50 105 (24.36%)
51 to 60 141 (32.71%)
>60 121 (28.07%)

Educational level Lower secondary education or less 248 (59.62%)
Upper secondary education 118 (28.37%)
Higher education 50 (12.02%)

Employment Full-time 192 (44.96%)
Housewife/retired 160 (37.47%)
Part-time 44 (10.30%)
Student/unemployed 31 (7.26%)

Table 2. Overall responses n = 431

Recommendation
Satisfaction No Maybe Yes Total
Poor 2 (0.46%) 0(0%) 0 (0%) 2 (0.46%)
Fair 2 (0.46%) 5 (1.16%) 6(1.39%) 13 (3.02%)
Good 0 (0%) 27 (6.26%) 61 (14.15%) 88 (20.42%)
Very Good 1 (0.23%) 10 (2.32%) 211 (48.96%) 222 (51.51%)
Excellent 1 (0.23%) 2 (0.46%) 103 (23.90%) 106 (24.59%)
Total 6 (1.39%) 44 (10.21%) 381 (88.4%) 431 (100%)

Table 3 reports the frequency distributions for each item (in the Appendix A the full
labels for the items). Individual items are measured on a four-point scale. As can be
seen, all variables have a distribution concentrated in the highest categories of the scale.
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Table 3. Item responses n = 431

Item Rating frequencies (%)
No, not at all Yes, but not as Yes, almost as Yes, as much

much as I wanted much as I wanted as I wanted

A1 3 (0.7%) 24 (5.57%) 146 (33.87%) 258 (59.86%)
A2 8 (1.86%) 23 (5.34%) 130 (30.16%) 270 (62.65%)
A3 21 (4.87%) 49 (11.37%) 112 (25.99%) 249 (57.77%)
A4 9 (2.09%) 35 (8.12%) 84 (19.49%) 303 (70.3%)
B1 10 (2.32%) 38 (8.82%) 116 (26.91%) 267 (61.95%)
B2 15 (3.48%) 42 (9.74%) 129 (29.93%) 245 (56.84%)
B3 9 (2.09%) 33 (7.66%) 112 (25.99%) 277 (64.27%)
C1 12 (2.78%) 44 (10.21%) 129 (29.93%) 246 (57.08%)
C2 14 (3.25%) 28 (6.5%) 131 (30.39%) 258 (59.86%)
C3 7 (1.62%) 51 (11.83%) 140 (32.48%) 233 (54.06%)
D1 3 (0.7%) 13 (3.02%) 73 (16.94%) 342 (79.35%)
D2 6 (1.39%) 9 (2.09%) 87 (20.19%) 329 (76.33%)
D3 4 (0.93%) 20 (4.64%) 101 (23.43%) 306 (71.00%)
E1 41 (9.51%) 56 (12.99%) 114 (26.45%) 220 (51.04%)
E2 46 (10.67%) 37 (8.58%) 141 (32.71%) 207 (48.03%)
E3 34 (7.89%) 40 (9.28%) 134 (31.09%) 223 (51.74%)
E4 21 (4.87%) 49 (11.37%) 132 (30.63%) 229 (53.13%)
E5 13 (3.02%) 40 (9.28%) 138 (32.02%) 240 (55.68%)
F1 10 (2.32%) 33 (7.66%) 133 (30.86%) 255 (59.16%)
F2 10 (2.32%) 28 (6.5%) 111 (25.75%) 282 (65.43%)
F3 13 (3.02%) 28 (6.5%) 122 (28.31%) 268 (62.18%)
G1 2 (0.46%) 22 (5.1%) 135 (31.32%) 272 (63.11%)
G2 10 (2.32%) 23 (5.34%) 72 (16.71%) 326 (75.64%)
G3 2 (0.46%) 13 (3.02%) 79 (18.33%) 337 (78.19%)
G4 2 (0.46%) 16 (3.71%) 82 (19.03%) 331 (76.80%)

4.2. Confirmatory factor analysis

The instrument, FACIT-TS-PS has not been validated yet in either English or Ital-
ian. Validation of the Italian version presents some problems. An attempt was made to
validate it through a CFA, see Figure 1.
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Figure 1. Complete model

A first step was to draw the path diagram for the hypothesized model. The results
confirmed internal consistency of the items (in fact, the Cronbach’s Alpha results were
all close to 0.80). The CFI was equal to 0.897 and the RMSEA to 0.081. CFI values
close to 1 indicate a very good fit, and the rule of thumb for RMSEA is that a value of
the RMSEA of about .05 or less would indicate a close fit of the model in relation to
the degrees of freedom. A value of about 0.08 or less for the RMSEA would indicate
a reasonable error of approximation (Browne and Cudeck, 1993). We verified that all
the standardized coefficients of the items were at least greater than 0.5, so all the items
are considered. However, some modification indexes between the errors were very high;
the modification index for a parameter is an estimate of the amount by which the dis-
crepancy function would decrease if the analysis were repeated with the constraints on
that parameter removed. We then added a covariance parameter in cases of very high
modification index. In particular, as seen in Figure 1, we added covariance between
items E3 and E4 (Decision Making); between items G1 and G2 (Trust) and also G3 and
G4 (Trust); and between the item A4 (Explanation) and B1 (Interpersonal). The new
model, presenting CFI equal to 0,926 and RMSEA equal to 0,069, was thus acceptable.
It seemed, however, that some items were redundant and the model might be acceptable
even with a smaller number of items. For this reason we decided to proceed with the
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CUB model approach, in order to select only the significant items and to obtain a more
parsimonious version of the instrument.

4.3. CUB approach

We estimated a series of CUB(0,q) models with overall measure as a dependent vari-
able and satisfaction with items as covariates to explain feeling. We used the stepwise
algorithm to select the best CUB(0,q) model with covariates to explain feeling. For each
dimension, we selected the significant items to explain feelings of recommendation and
satisfaction. We compared the significant items of satisfaction and of recommendation,
and we considered all significant items of satisfaction, of recommendation, or of both.

We applied a CUB(0,25) model containing all the initial items and a CUB(0,15)
model using the significant items with recommendation and satisfaction as dependent
variables.

Table 4. Recommendation

CUB(0,25) CUB(0,15)
log-likelihood -109 -115
AIC 272 263
BIC 381 332

Table 5. Satisfaction

CUB(0,25) CUB(0,15)
log-likelihood -431 -434
AIC 916 903
BIC 1026 972

The maximized log-likelihood for the CUB(0,25) model for recommendation is -
109, which is higher than the value for the CUB(0,15) model, which is -115. Moreover,
for the first model AIC = 272 and BIC = 381 and for the second model AIC = 263
and BIC = 332. According to these criteria, the second model is preferable to the first,
in fact the likelihood ratio test is not significant: 2(ℓ25 − ℓ15) = 12 and χ2

g=10 = 18.31
at the significance level of α = 0.05. Table 4 reports these results.
The maximized log-likelihood for the CUB(0,25) model for satisfaction is -431, which
is higher than the value for the CUB(0,15) model, which is -434. Moreover, for the
first model AIC = 916 and BIC = 1026 and for the second model AIC = 903 and
BIC = 972, so according to these criteria, the second model is preferable to the first,
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in fact the likelihood ratio test is not significant: 2(ℓ25 − ℓ15) = 6 and χ2
g=10 = 18.31.

Table 5 reports these results.
The fact that the model with 25 items is, in fact, equal to the model with 15 (according to
the likelihood ratio test) is an important result that emphasizes the need for validation of
the instrument. A future effort toward validation would be to submit a shortened version
of the questionnaire to patients and to analyse the results.
Figure 2 shows the map Feeling vs. Importance. The feeling value for each item is
represented by the feeling (1− ξ ), obtained by estimating as many CUB(0,0) models as
there are items. Importance has been obtained using two CUB(0,15) models for recom-
mendation and satisfaction. The coefficients γ1, γ2, ..., γq reflect the importance of each
item in predicting the feeling of the recommendation and of the satisfaction. Placement
of items on the maps shows that the most important items for recommendation are G3
(trust), D2, (technical quality) and E4, (decision making) and the most important items
for satisfaction are G3, again, and C3, (comprehensive).
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Figure 2. (a) CUB map Feeling vs. Importance on Recommendation (b) CUB map
Feeling vs. Importance on Satisfaction

Finally, a CFA was done using only the 15 most significant items. Figure 3 shows the
reduced model and Table 6 reports correlations among the dimensions and the overall
measure that are not readable in the plot. The trust dimension is confirmed as the most
relevant, as it was in the CUB model results.
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Figure 3. Reduced model

Table 6. CFA reduced model standardized weights

Dimensions Overall
Trust 0.999
Technical Quality 0.871
Comprehensive Care 0.858
Interpersonal 0.793
Explanations 0.722
Decision Making 0.589
Nurse 0.505

Table 7 summarizes the fit of factor analysis for the complete and reduced mod-
els. Both CFI and RMSEA get acceptable values for the reduced model. Therefore,
the reduced model can be accepted, and it confirms the original, reliable, seven-factor
structure.
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Table 7. CFA results

Complete Model Reduced Model
CFI 0.926 0.970
RMSEA 0.069 0.059

5. Conclusions

The Italian version of the Functional Assessment of Chronic Illness Therapy - Treat-
ment Satisfaction - Patient Satisfaction (FACIT-TS-PS) can be considered a reliable in-
strument with good construct validity and a more practical structure than the original
version, which included 25 items. The item reduction from 25 to 15 is particularly
worthwhile, considering that the time required for completion of the questionnaire is a
crucial variable, closely related to data validity, especially in a target population such as
ill or older people.

The classic approach to validation pointed out some problems with the questionnaire
in measuring the latent construct. Use of the CUB models, applied here for the first time
to validate psychometric tests, enabled reduction of the questionnaire.

Concerning the observed very high level of patient satisfaction, the results are in
agreement with previous research on patient satisfaction and quality of care ( Fitzpatrick
and Hopkins, 1983; vanCampen, et al., 1995; Jenkinson, et al., 2002; Gutteling, et al.,
2008). Patients generally indicate that they are highly satisfied with care and that sat-
isfaction is associated with willingness to recommend to others the hospital in which
they received treatment. However, the observed discrepancy between declared overall
satisfaction and the latent measure obtained from a combination of the satisfaction with
individual dimensions shows that many respondents who indicated that they were satis-
fied with their health care on the declared satisfaction measure also indicated problems
with some aspects of their experience as chronically ill patients. This seems to sug-
gest that patient satisfaction scores, and the related issue of willingness to recommend a
hospital to others, present a partial and optimistic picture. The evidence presented here
suggests that satisfaction with patient care and willingness to recommend a medical fa-
cility do not imply that all aspects of that care were successfully delivered, confirming
results from other industries, such as civil aviation, in which satisfaction scores may be
high but customers complain about specific aspects of the service (Bethune and Huler,
1998). This result has important practical implications because health care services of-
ten use a single-item overall measure to report a high level of quality for the care they
deliver.

Analysis of the importance that individual dimensions of patient experience have
on overall satisfaction measures shows an interesting result: trust has the highest asso-
ciation with overall satisfaction measures, confirming other empirical studies (Dugan,
Zheng, and Mishra, 2001). The literature demonstrates that trust in and satisfaction with
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health care services are closely related: trusting patients are likely to be more satisfied,
and previous good experiences with a doctor are likely to foster trust. However, trust is
concerned with much more than merely assessing a health care service; it is inextricably
linked to the quality of the patient-doctor relationship, doctor characteristics and moti-
vation (Dugan, Zheng, and Mishra, 2001), and it is less vulnerable than satisfaction to
rapid revisions based on a single positive or negative experience (Murray and Holmes
1997). One study found that trust is better than satisfaction at predicting which pa-
tients continue their care with the same doctor and have good compliance with medical
treatments (Thom, et al., 1999). Further analysis that considers demographic features
of the patients (especially age and education) will allow better understanding of this
almost-complete overlap between trust and satisfaction, as well as better understanding
of differences in the other factors in FACIT-TS-PS.

Appendix A.

FACIT-TS-PS questions:

A1. Did your doctor(s) give explanations that you could understand?
A2. Did your doctor(s) explain the possible benefits of your treatment?
A3. Did your doctor(s) explain the possible side effects or risks of your treatment?
A4. Did you have an opportunity to ask questions?
B1. Did you get to say the things that were important to you?
B2. Did your doctor(s) seem to understand what was important to you?
B3. Did your doctor(s) show genuine concern for you?
C1. Did your doctor(s) seem to understand your needs?
C2. Did you feel that the treatment staff worked together towards the same goal?
C3. Were you able to talk to your doctor(s) when you needed to?
D1. Did you feel your doctor(s) had experience treating your illness?
D2. Did you feel your doctor(s) knew about the latest medical developments for your illness?
D3. Was the treatment staff thorough in examining and treating you?
E1. Did your doctor(s) discuss other treatments, for example, alternative medicine or new treat-
ments?
E2. Were you encouraged to participate in decisions about your health care?
E3. Did you have enough time to make decisions about your health care?
E4. Did you have enough information to make decisions about your health care?
E5. Did your doctor(s) seem to respect your opinions?
F1. Did your nurse(s) give explanations that you could understand?
F2. Did your nurse(s) show genuine concern for you?
F3. Did your nurse(s) seem to understand your needs?
G1. Did you feel that the treatment staff answered your questions honestly?
G2. Did the treatment staff respect your privacy?
G3. Did you have confidence in your doctor(s)?
G4. Did you trust your doctor(s)’ suggestions for treatment?
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Summary: Economic variables are typically observed over time and across different but
likely correlated areas. When interested in forecasting the aggregate across the various
areas, a question that naturally arises is whether gains in efficiency can be obtained using
a direct approach or an indirect approach. This issue has been recently considered in
Giacomini and Granger (2004), where it is shown that stationary space-time AR(1, 1)
models are relatively more efficient than traditional ARMAs and V ARs models in
terms of forecasting accuracy. We extend these findings by considering a more general
and realistic non-stationary context, where cointegration constraints in time are allowed
to exist. A concrete application with monthly inflation rate for Euro-zone economies is
presented.

Keywords: Space-time models, Aggregation, Forecasting, Inflation rate.

1. Introduction

The European Monetary Union (EMU) has stimulated the need for Euro area macroe-
conomic studies and forecasts of area wide aggregates. European integration means that
political and business decisions increasingly depend on aggregate European real eco-
nomic activity, so it is of increasing interest to consider the problem of forecasting real
activity measures for the Euro area as a whole. This had induced a revival of the discus-
sion of aggregation of time series variables over the last years. Forecasting Euro area
aggregates is largely a new topic and there is considerable uncertainty about the best to
approach this task.
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When forecasting a contemporaneously temporally aggregated variable of interest,
there are different possibilities to proceed.

The analyst might ask whether it will be more efficient to forecast the aggregate
series directly or to model the individual components separately, and then aggregate the
forecasts.

The theoretical literature shows that aggregating component forecasts is at least as
accurate as directly forecasting the aggregate when the data generating process (DGP )
is known (Lütkepohl, 1984, 1987; Granger, 1987; Garderen et al. 2000; Giacomini
and Granger, 2004). However in practice the DGP used for forecasting is unknown
and the parameters have to be estimated from data. Usually also the process orders
and other characteristics are specified from the observed time series and, hence, are un-
certain. Clements and Hendry (1998) and Lütkepohl (2006) discuss the implication of
these complications. If estimation and specification uncertainty are taken into account,
standard theoretical results may not be true, and it turns out that forecasts based on dis-
aggregated multiple time series may not be better and may even be inferior to forecasting
an aggregate directly.

Therefore it is largely an empirical question whether aggregating forecasts of dis-
aggregates improves forecast accuracy of the aggregate of interest The literature that
tries to answer the question is fairly large, but does not provide clear guidelines. An
overview of the theoretical relative efficiency of forecasting the aggregate variable di-
rectly or indirectly from the univariate components is given in Giacomini and Granger
(2004), Lütkepohl (1987, 2006), and Wei and Abraham (1981).

Giacomini and Granger (2004), hereafter GG, show that aggregate forecasts from a
space-time autoregressive model improve forecast performance and offer a solution to
the curse of dimensionality that arises when forecasting with V ARs. Ignoring spatial
correlation, even when it is weak, leads to highly inaccurate forecasts. Arbia et al.
(2011) provide many Monte Carlo simulations starting from the GG findings.

In the present paper we extend the space-time model proposed in GG by considering
a more general and realistic non-stationary context. Our empirical analysis compares
the forecast performances of the space-time AR model with different direct and indirect
approaches, when the cointegration constraints in time are allowed to exist.

Although the main focus of this paper is on comparing forecasting models, our find-
ings might be of interest also to macroeconomists and policy maker in the Euro-zone.
Forecasting price developments in the Euro area is essential in the light of the second
pillar of the European Central Bank’s (ECB) monetary policy strategy. Moreover the
inflation forecasts play a determinant role in the uncertainty surrounding the estimated
effects of alternative monetary rules on unemployment dynamics in the Euro area.

The aggregation of forecasts of inflation is receiving increasing attention by staff at
central banks in the Eurosystem. Hubrich (2005), Altavilla and Ciccarelli (2009), Ar-
ratibel et al. (2009), Bermingham and D’Agostino (2011) are only any of these studies.
However no one of them deals the problem from a spatial perspective.

Hubrich (2005) analyses whether the accuracy of forecasting aggregate Euro area
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inflation can be improved by aggregating forecasts of sub-indices of the Harmonised
Indices of Consumer Prices (HICP) as opposed to forecasting the aggregate HICP di-
rectly. Various models are employed and the results indicate that aggregating forecasts
by component does not necessarily help forecast year-on-year inflation twelve months
ahead.

Altavilla and Ciccarelli (2009) explore the role that inflation forecasts play in the
uncertainty surrounding the estimated effects of alternative monetary rules on unem-
ployment dynamics in the Euro area. They use the inflation forecasts of eight competing
models that are included in a Bayesian V AR and analyse the size and the timing of these
effects. Combining inflation forecasts from many models not only yields more accurate
forecasts than those of any specific model, but also reduces the uncertainty associated
with the real effects of policy decisions.

The paper of Arratibel et al. (2009) is a systematic study of the predictive power
of monetary aggregates for future inflation for the cross section of New EU Member
States. It provides stylized facts on monetary versus non monetary (economic and fiscal)
determinants of inflation in these countries as well as formal econometric evidence on
the forecast performance of a large set of monetary and nonmonetary indicators. The
forecast evaluation results suggest that, as has been found for other countries before, it
is difficult to find models that significantly outperform a simple benchmark, especially
at short forecast horizons. Nevertheless, monetary indicators are found to contain useful
information for predicting inflation at longer (3-year) horizons.

The paper of Bermingham and D’Agostino (2011) is in line with that of Hubrich
(2005) and try to determine whether it is better to forecast a series directly or instead
construct forecasts of its components and then sum these component forecasts. The
authors analyse two price datasets, one for the United States and one for the Euro area
and provide a guide to model choice. They consider multiple levels of aggregation
for each dataset and different models: an autoregressive model, a factor augmented
autoregressive model, a large Bayesian V AR and a time-varying model with stochastic
volatility. In contrast to other paper, they find that once the appropriate model has been
found, forecast aggregation can significantly improve forecast performance.

The remainder of the paper is organized as follows. The space-time AR model is
discussed in Section 2, and the Section 3 introduces the forecasting models that will
be used in the empirical analysis. Results are presented in Section 4, and Section 5
concludes.

2. The space-time autoregressive model

The space-time autoregressive (space-time AR) models were originally proposed by
Cliff and Ord (1973) and Cliff et al. (1975) and generalized by Pfeifer and Deutsch
(1980). Only recently there has been a renewed interest for models of spatial depen-
dence in traditional economics, perhaps due to the increasing availability of highly dis-
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aggregated and spatially referenced data. Recent discussions and applications of the
space-time AR model in econometrics can be found in Elhorst (2001, 2012) and Szulc
(2000).

The space-time AR model class expresses the observation at time t and location i as
a weighted linear combination of previous observations lagged in both space and time.
The basic mechanism for these models is a hierarchical spatial ordering of the neigh-
bours of each site and sequence of weighting matrices Ws. Matrix Ws has elements ws

ij

that are non-zero if and only if sites i and j are s-th order neighbours. Therefore the
spatial lag of order s can be defined as a weighted average of all observations in a given
neighbouring set (see, e.g., Anselin, 1988, pp. 22–26):

Lsxt =
∑
j∈Js

ws
ijxj s = 1, 2, . . .

where Js is the set of neighbours of order s of region i.
The choice of the weights ws

ij is a crucial issue in spatial econometrics. The tra-
ditional unidimensional measure adopted in spatial econometrics is based on the geo-
graphical distance, but other measures reflecting various notions of social or economic
distance can be considered.

While theory will in the best practice cases drive the structure of W, it nevertheless
is true that there are a number of degrees of freedom in the exact W specification. Harris
et al. (2011) review some alternative approaches to construct W.

According to the predefined criterion, the weights ws
ij are assumed generally to sat-

isfy:
a) ws

ij ≥ 0 ∀i, j
b) ws

ii = 0 ∀i
c)

∑
j∈Js

ws
ij = 1

As in GG we consider the simplest form of a space-time model for the conditional
mean of the zero-mean variable xit, a space-time AR(1; 1), which ignores dependence
beyond the first temporal and spatial lags and where the first order refers to the temporal
and the second to the spatial lag:

xit = φxit−1 + ψ

k∑
j=1

wijxit−1 + εit i = 1, . . . , k t = 1, . . . , T (1)

In (1) the wij represent the elements of the Ws matrix with s=1, where the suffix 1 was
for convenience omitted and k is the number of the spatial unit, therefore in our case of
the countries.

Typically, isotropy is assumed, so that only distance between i and j is relevant, not
the direction i to j.

When ψ = 0 equation (1) represents a time-stationary process if the condition |φ| < 1
holds. However, when the stationary region for the two-parameter model is given by
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(Pfeifer and Deutsch, 1980):
|φ|+ |ψ| < 1 (2)

In matrix notation, equation (1) can be rewritten as:

xt = φxt−1 + ψWxt−1 + εt t = 1, . . . , T (3)

where xt is a vector of dimension k and, as outlined in GG, the space-time AR(1; 1)
model can be seen as a special case of a V AR(1) model, with the autoregressive coeffi-
cient matrix Γ restricted to equal φI + ψW .

In the present paper we extend this model by considering a more general and realistic
non-stationary context, where cointegration constraints are allowed to exist.

In case of a space-time Error Correction Model, we obtain:

∇xt = (φI + ψW )∇xt−1 + γ(α1I − α2W )xt−1 + εt t = 1, . . . , T (4)

From this equation it can be seen that a spatial unit is not only influenced by its
local conditions, but also by those of its neighbours, dependent on the structure of the
spatial weight matrix W. Furthermore, the impact of these conditions is not necessarily
uniform across spatial units. In our case we get k×k different spatial longrun parameter
estimates. It is clear that the amount of output might be a problem of this model. Even
for small values of k, it may already be rather difficult to report the estimation results
compactly.

It should be stressed that, while most previous studies in the analysis of space-time
data are oriented toward spatial cross-section analysis, in this paper we shift the empha-
sis to time series modelling techniques. In accordance with Elhorst (2001), we observe
that serial dynamic effects are usually more important than spatial dynamic effects. One
explanation might be that serial dependence is measured between only two observations,
whereas spatial dependence must be averaged over multiple observations, which auto-
matically restricts it. Moreover, in contrast to stationarity in time, stationarity in space
is quite difficult to impose, as evidenced by Griffith and Lagona (1998).

To this end we simplify the model in (4) as follows:

∇xt = (φI + ψW )∇xt−1 + γ(αxt−1) + εt t = 1, . . . , T (5)

where the cointegration constrains are defined only over time and are given, as usual, by
αxt−1. The extension of the model for lags greater than one is straightforward.

3. Forecasting spatial aggregated series

Contemporaneous aggregated time series variables can be forecasted in different
ways. For example, one may directly use the aggregated series, construct a time series
model for its data DGP and use that for forecasting. Alternatively, one may construct a
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time series model for the DGP of the disaggregated data and forecast the disaggregated
series.

In the present paper we follow GG and suppose that the goal is to forecast yt =∑k
i=1 xit the aggregate of the same variable across k regions (or countries) related by

spatial dependence 1. With respect to GG we introduce the presence of non-stationarity.
To this end the comparison of the forecasts are obtained through the following different
methods:

a) The aggregate yt can be forecasted directly by fitting a univariate ARIMA model to
the series yt.
b) Univariate ARIMA of each variable xit, i = 1, ..., k can be obtained and then ag-
gregated.
c) The vector yt may be forecasted by fitting a multivariate V ECM model to the series
xit. A forecast for yt is obtained by aggregating the resulting forecasts for each xit.
d) A space-time AR (with error correction) model can be used to forecast each variable
xit. The forecasts for each component are then aggregated.

If the goal is to compare the forecast of the aggregated series obtained through dif-
ferent methods, it is useful to introduce a loss function or an evaluation criterion for the
forecast performance. Given such a criterion, optimal forecast may be constructed.

Here we use the minimum Mean Squared Error (MSE) forecast, where:

MSE = E (yt+h − ŷt(h))
2

(6)

and ŷt(h) is the h-step ahead forecast of future value yt+h. The reader is referred to
Granger (1969) and Granger and Newbold (1977) for a discussion of other forecast
evaluation criteria.

GG demonstrated that under some strict assumptions about the DGP and the orders
of the ARMA representations of the variables of interest in each forecasting situation,
the following result holds:

MSE4 (ŷt(1)) ≤ MSE3 (ŷt(1)) (7)

where MSE3 refers to the V AR and MSE4 to the space-time AR model and are
restrict to the one-step-ahead forecasts of yt, denoted by yt−1(1).

In case of estimation and specification uncertainty forecasts comparisons give am-
biguous results. Furthermore the presence in our models of non-stationarity worse the
reference framework. To this end we follow a pure empirical approach in the evaluation
of forecasts of the four models.

In the following section we compare the forecasts obtained with the previously pre-
sented methods. However in our application yt, the aggregated variables across k regions

1 This assumption will be relaxed later in the paper.
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related by spatial dependence, is computed as a weighted average of the single series:

yt ≡
k∑

i=1

vixit (8)

where the weights vi sum one. As the V AR processes are closed with respect to linear
transformations (Lütkepohl, 1987), the theoretical results demonstrated for the aggrega-
tion through the sum continue to be valid also in our case.

4. Data and empirical analysis

In this section we investigate the behaviour of the forecasts of the year-on-year in-
flation rates in % in Euro zone obtained through the four different scenarios proposed in
Section 3.

The data used in the present application are the Harmonised Indices of Consumer
Prices (HICPs) of the first 12 European countries that entered in the Euro-zone: Austria,
Belgium, Finland, France, German, Greece, Ireland, Italy, Luxembourg, Netherland,
Portugal and Spain. The data employed are of monthly frequency starting in 2001M1
until 2011M12. The sample is split into estimation and a forecast period, leaving the
last three months for evaluate the forecasts 1-2 and 3 steps ahead.

Harmonised indices of consumer prices give comparable measures of inflation for
the countries and country groups they are produced.

They are economic indicators that measure the change over time of the prices of
consumer goods and services acquired by households.

In particular, HICPs provide the official measure of consumer price inflation in the
Euro area for the purposes of monetary policy and the assessment of inflation conver-
gence as required under the Maastricht criteria.

The HICP country group aggregates for the Euro area are calculated by Eurostat
using the HICPs provided by the Member States. The Euro area aggregate is compiled
as a weighted average of the countries comprising the Euro area. The country weights
are derived from national accounts data for Household Final Monetary Consumption
Expenditure (HFMCE), naturally expressed in Euro. The weight of a country is its share
of HFMCE in the total of the country group.

The aggregated Euro index is constructed by Eurostat updating the countries entering
the Euro area. However, for technical reason, we maintain fix the aggregation over only
the first 12 pioneering countries.

The twelve national HICP price index in logarithm are presented in Figure 1 and
the year-on-year inflation rates in % are depicted in Figure 2. In Figure 3 we have the
corresponding aggregated series.

The performance of the four different aggregation methods is evaluated for the year-
on-year inflation rates (in %) series.
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Figure 1. HICP price index in logarithm
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Figure 2. HICP year-on-year inflation rates in %
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Figure 3. HICP price index in logarithm and % for EU12

The maximum forecast horizon is fixed at h = 3. Empirical and theoretical consid-
erations have guided our choice, as forecasts with h > 3 have no practical interest and
generally show high uncertainty.

We start the empirical analysis by performing standard Dickey-Fuller tests (DF and
ADF ) to investigate the order of integration of the series. The results, not reported here
to save space, indicate that all series are I(1) and make it possible to apply Johansen’s
maximum likelihood cointegration analysis. Table 1 reports the results of the trace and
maximal eigenvalue (max λ) tests that verify the presence of r cointegration relation-
ships. The model used assumes that the process has a linear trend, but that there is no
trend in the cointegrating relations, as it seems appropriate for our series. Depending on
the test, data support the existence of r = 10 (trace test) or r = 6 (max eigenvalue test)
cointegration relationships among the twelve variables; this implies the existence of two
or six common stochastic trends. In view of a parsimony criterion in the identification
of the V ECM , we choose r = 6. The cointegration analysis shows a high concordance
in the long-run behaviour of the inflation rates in EU area.

We selected the order of the system by estimating V ECM of different lengths (from
1 to 6) and picking the one with the smallest Akaike Information Criterion (AIC). A
V ECM of order 4 was estimated, also based on different diagnostic checking tests. For
the univariate ARIMA we fitted models with p ≤ 6 and q ≤ 6.

In the estimation of the V ECM(4) a number of coefficients were not significantly
different from zero. We thus applied a top-down procedure to eliminate all zero coeffi-
cients, in a way to obtain a parsimonious final model and gain in efficiency.

For the estimation of the space-time AR model, firstly we had to check for the
presence of spatial dependence between the 12 time series. To this end, we applied
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Table 1. Johansen cointegration tests.

H0 Trace test p− value maxλ p− value

r ≤ 0 680.9 0.0000* 128.9 0.0000*
r ≤ 1 551.9 0.0000* 117.2 0.0000*
r ≤ 2 434.7 0.0000* 101.7 0.0000*
r ≤ 3 333.0 0.0000* 79.4 0.0001*
r ≤ 4 253.6 0.0000* 67.9 0.0007*
r ≤ 5 185.6 0.0000* 53.4 0.0073*
r ≤ 6 132.2 0.0000* 39.3 0.0607
r ≤ 7 92.9 0.00003* 31.8 0.0866
r ≤ 8 61.1 0.0018* 27.5 0.0517
r ≤ 9 33.6 0.0173* 21.1 0.0501

r ≤ 10 12.5 0.1344 9.4 0.2540
r ≤ 11 3.1 0.0784 3.1 0.0784

* denotes rejection of the hypothesis at least at the 0.05 level

Table 2. Moran’s I test

Year Moran’s I test p− value

2002 1.7052 0.04408
2006 2.5944 0.00474
2010 1.3614 0.08670

the Moran’s I test for each year of the sample. In order to apply this test we need to
define the spatial weight matrix. The choice of the weights is a crucial issue in spatial
econometrics.

Our data are defined for the whole economy, while in general spatial models make
use of lower aggregation levels. This suggests limiting the presence of spatial depen-
dence to lag one.

In the European geographical framework, the presence of islands does not allow
the definition of a simple binary contiguity weighting matrix. In this paper, the spatial
weight matrix W, is identified in terms of a row-standardized binary matrix, based on
the l-nearest neighbouring regions, where each single region has the same number (l) of
neighbours. With l = 3, Greece is connected to Italy, Ireland is linked with continental
Europe and so on (see also Le Gallo and Dall’erba 2006).

In Table 2 we report some results of the Morans I test, for initial, median and final
years.

The use of economic distance in the definition of the structure of the W matrix
would be more realistic, however it poses problems in a time series framework. The
assumption that W is necessarily a fixed matrix, is an issue when spatial econometrics
is extended to time series or panel data modelling: W could evolves trough time and
interacting with the regression variables (Corrado and Fingleton, 2012). Moreover, the
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Figure 4. MSE for the different methods

sample considered in our application covers a period of significant economic changes,
an assumption in contrast with the hypothesis of constant economic distance. To this
end we prefer to deal with the traditional distance-based unidimensional measures used
in spatial econometrics (Anselin, 1988).

The Morans I test confirms the presence of spatial dependence and this result favours
the estimation of the space-time AR model. However, we note that the spatial depen-
dence is stronger in the middle of the sample, while at the beginning and at the end of
the period this dependence dimmed.

We fit a space-time AR(4; 1), where the first order refers to the temporal lag and the
second to the spatial one. In accordance with the space-time model in (5), we introduce
the six cointegration relationships.

Again, considering the large number of zeros in the matrix W, we applied a parsi-
mony procedure also to the space-time model. The final spatial model includes only 72
parameters out of the about 250 of the V ECM .

The estimated MSE of the different methods are shown in Figure 4, and computed
recursively for 1, 2 and 3 steps ahead forecasts, with:

ˆMSE(h) =

h∑
i=1

(yt+i − ŷt(i))
2

h
h = 1, 2, 3 (9)

As MSEs are generally highly affected from the presence of extreme values, we
report in Table 3 other evaluation criteria 2 which are likely less responsive.

The performances of the Mean Absolute Error MAE, the Mean Absolute Percent-
age Error MAPE and the Root Mean Square Error RMSE are all similar to those of
the MSE.

2 We report only the results for h = 3 to save space.
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Table 3. Forecasting Evaluation Criteria for h=3

Model MAE MAPE RMSE
AR-uni 0.000325 0.01125 0.000429

AR-multi 0.000143 0.00513 0.000173
VECM 0.002333 0.08286 0.002610
sp-AR 0.001248 0.04305 0.001319

Table 4. Diebold-Mariano test

h H0 p-value
h=1 e1 = e2 0.2578

e3 = e4 0.2129
others 0.0000

h=2 e3 = e4 0.1851
others 0.0.0000

h=3 All 0.0000

The relative performance forecast of the space-time AR model versus the V ECM ,
i.e. MSE4 versus MSE3, is evident in Figure 4. The aggregate forecast of the space-
time AR model is overall more efficient, and the efficiency increases with h. However,
the observed differences are very small. Therefore, we applied the Diebold and Mariano
(1995) test to verify whether the (loss squared) difference between two forecast errors
is statistically significant. The null hypothesis is that two alternative methods are - on
average - equally accurate. We applied such a test over all pairs of forecasting methods.

The results are synthesized in Table 4, where ei = ej is the null that the forecasting
errors of methods i and j are equal. For horizon h = 3 the errors are all significantly
different.

The poor performance of method (3), i.e. the V ECM model, is a surprising result.
However, we note that the forecasts are computed from the reduced V ECM model,
whose dimension was obtained through a general-to-specific search. A similar outcome
was found by GG who highlighted the negative results of this selection procedure. In
contrast with GG, we find that univariate methods perform better than multivariate ones.
Different reasons might explain this finding. First, spatial dependence in the final period
is weak and, in the last months, country-specific behaviours dominate the dynamic of
each inflation rates. Second, the poolability condition (GG, 2004) that spatial influence
is relatively uniform across regions can justify this result. In this case, the interrelation-
ships between countries are less relevant.

Finally, while GG consider only simulated stationary series, our series are non sta-
tionary. The existence of cointegration relationships implies the estimation of a number
of parameters that can increase forecasts uncertainty.
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5. Conclusions

The aim of this article was to perform a comparison of the relative efficiency of
different forecasting methods for aggregated data that are both temporally and spatially
correlated. We extended the findings of GG by considering a more general and realistic
non-stationary context, where co-integration constraints in time are allowed to exist. A
concrete application on monthly inflation rate for Euro-zone economies is considered.
The empirical analysis shows that there is not a method that dominates over the others.

Our results highlight a better forecast performance of the univariate methods with
respect to the multivariate ones. It seems that the presence of non-stationarity and the
estimation of the cointegration relationships increase significantly the uncertainty of the
forecasts.

However the space-time model performs better than the traditional V ECM model,
and the number of estimated parameters decreased dramatically from more than 250 to
only 72.

In contrast with Bronars and Jansen (1987) we found that the weak spatial depen-
dence in our forecast interval worsened the performance of the space-time AR model.
In the central period of the sample, where the Moran’s I test shows a higher spatial
dependence, the fitting capability of the space model is significantly better.

The results obtained in our paper suggest further analysis. First of all a global sta-
tionarity (spatial and temporal) test should be performed and applied on the data.

Secondly, spatial analysis is made usually at a finer level of disaggregation, as
NUTS2 for European regions. For these data the propagation on the space is more
significant, that at country level. However in this case the order in the multivariate mod-
els will drastically increase and it is interesting to view the performance of the different
methods. Arbia et al. (2011) present some simulation results over different scenarios.

Finally, Arbia et al. (2011) evidenced that standard MSE could be inappropriate to
evaluate forecasts when aggregating with space-time series. In this case the outcome of
the aggregation procedure is not merely a time series of data, but it is a new spacetime
series. In these conditions a forecasting strategy has to be judged not only in terms of the
standard MSE measure, but also in terms of the spatial characteristics of the forecasting
errors. A forecasting method that provides an accurate estimate in terms of MSE may
well be rejected if it provides forecasting errors that are concentrated in a systematic way
in some definite portions of space, displaying a positive spatial correlation. The authors
propose therefore to incorporate spatial analysis into forecasting evaluation criterions.
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