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Summary: The aim of this paper is to propose a procedure for the estimation of the
asymptotic variance of kernel estimators for dependent data. The method is based on
the assumption that the underlying process is stationary and @-mixing. Under this
assumption, the proposed approach, which is itself based on kernel smoothing, is
proved to be consistent.
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1.Introduction

In the last years, kernel estimators have been found useful and
successfully applied to estimate regression functions without reference
to a specific parametric class. Most of the literature on this topic is
based on the assumption that the observed data are independent
(Hardle, 1990; Wand and Jones, 1995). However, there are many
settings where it is reasonable to assume the existence of some kind of
dependence in the data. This is particularly of interest in time series
analysis (Gyorfi et al., 1995) where the independence assumption is
clear not acceptable.

In this paper we analyse the properties of kernel estimators in time
series analysis. Under the assumption that the underlying process is
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stationary and @-mixing, we propose a method to estimate the
asymptotic variance of the kernel estimator.

The paper is organised as follows. In the next section kernel
estimators are introduced in the context of time series and some
conditions and theorems are stated. In section 3 the proposed approach
is described. Finally, in section 4, some final comments are presented.

2. Kernel Estimators for dependent data

Let {7, }t=1,n be a process generated by the model:

Y, =m(X,)+¢, (D)
where X, is a non stochastic explanatory variable defined on a compact
set X=[a,b] < R; m(.) is a smooth function and {¢} is a stationary and
¢@-mixing process (Billingsley, 1968). Then it is:

E(e)=0; Var(e)=0"<co CoV(e, &4 )=Y(i) )
and

Ox—0 as k—>eo

where the @-mixing coefficients are defined by:

¢, = sup sup |P(B|A)—P(A)|
n P(A)>0

VAe 3”

)

VBe 3, with 3! (n, m € ZU{-o0, +o0}) being the o -

algebra generated by {¢, n<t<m}.
Throughout this paper we suppose also that:
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glfp,-”z <oo 3)

This hypothesis implies some attractive properties for the moments of
(-mixing variables.

When X=Y.;, model (1) becomes an autoregressive non-linear
model; it is easy to show that, in this case, all the hypotheses are
verified.

In the most general form, the Priestley Chao kernel estimator of the
function m(.) is defined (Hirdle, 1990),Vxe R, by

iy (1) =7 S K, (x - X, Y, @)

t=1

where the X; are equally spaced in the compact set, 2 is the
“bandwidth parameter”, Ku(x)= 1/hK(x/h) and K(.) is a real bounded
function.

The kernel function K(.) and the bandwidth 4 will be supposed to
satisfy the following conditions:

IK(x)dx=l; J.zK(z)dz=O;
x x
&)
IzzK(z)dz=dK<w IKZ(z)dz=cK<m
x X
h—0 as n—eo; nh—o0 as n—yeo 6)

The properties of kernel estimators are stated in the following
theorems. For the sake of brevity, the proofs are omitted. More details
can be found in Hirdle (1990) and Gyorfi ef al. (1990).
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Theorem 1 (Convergence in probability)

Suppose that model (1) holds where & is a stationary and @-mixing
process. Under the hypotheses (3), (5) and (6), the estimator rm(x)

defined in (4) converges in probability to m(x); that is:

m(x) i} m(x)

Theorem 2 (Convergence in distribution)

Suppose that model (1) holds where ¢ is a stationary and @-mixing
process and m(.) is twice differentiable. Under the hypotheses (3), (5),
(6) and if

h = n—l/S .
then
~nh(m(x)—m(x))
converges in distribution to a Normal random variable; that is:

rh (7(x) = m(x)) —2— N (u(x),V?) .

The mean is equal to:

u(x) = dx[m (x)]
2
and the variance is equal to:
V2 =V ZCK

where
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vi=o®+237())

J=1

with y(j) being the autocovariance function at lag j of the error term
Following the lemma 1 in Ch. IV of Billingsley (1968), it is:

| E(er i) | <201? Var(e,) (7)

so if the condition (3) holds, then Zy(j) converges.
J=1

3.The estimation of the asymptotic variance

In order to estimate the asymptotic variance of mi(x), it is
necessary to determinate the quantities cx and v/. The former depends
only on the kernel function and then it can be analytically evaluated.
Differently the latter depends on y(i) which has to be estimated.
Furthermore an appropriate truncation lag M for the series (i) must be
determined.

The conditional autocovariance y(i;x) is defined as:

¥ (%) = E[(¥, = m(0))(¥,,; ~m(x) | X = x]
where the dependence on x is due to fact that we are considering the

estimate in a fixed point of the compact support.
A method to estimate this quantity is:

n—i

PG x) = %ZW:‘- )Y, = (), — (X))
=1

We propose to estimate the weights using a kernel function i.e.:

¥



L{=2)
W, (x;h) = : :

n—i x—X 5
. B
n—ij=1h h

|J(—X“~ I= max{lx—X, I’IX_XH-i I}

where

In this case the kernel estimate is constructed by centring a scaled
kernel at each observation The spread of the kernel is determined
considering the maximum distance between the fixed point x and the
observation at different lags.

The proposed estimator has some asymptotic properties stated in
the following theorem.

Theorem 3

Suppose that model (1) holds where {&} is a stationary and @-mixing
process. Under the hypotheses (3), (5), (6), Y(i;x)is a consistent and
asymptotically unbiased estimator; that is:

ElpG:x)| X = x]— yG;x)
Varlp(i;x)| X = x]—>0
Sketch of proof
The theorem can be proved using the method proposed in Priestley

(1981) and theorem 1. Under the given hypotheses and by means of
lemma 1 in Ch. IV of Billingsley (1968), the result holds.
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In order to approximate the series of i), it is necessary to
determine an appropriate number M of significant autocovariance.

To do this we use an approach based on spectral theory.

Let g(w) be the spectral density function:

g(w) = é iﬂs)exp(—iws)

s=

where y(s) is the autocovariance at lag s
Since it is:

2778(0) = S y(s)

§=—00

a consistent estimator of g(0) is:

. 1 X "
80)=—— D w(s)P(s)

s=—M
where w(s) is defined as follows
w(s)=w(-5); w(0)=1; w(k)=0 per |k|>M

If we consider the function:

with Me N.

1 ifM=>s>-M
w(s) =
0 elsewhere
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it is:

.
2722 (0) = ) 7(s)

s=—M

where the parameter M is such that:

M
— —> 0 as n—oo,
n

In order to obtain a consistent estimator it is sufficient that
M=( n)l/2.

In this case the autocovariance estimates depend on the smoothing
parameter h of the kernel so the rate of convergence of M must depend
on that of h. It is easy to show that the rate of the convergence of 1/M
must be not greater of that of 4
We can suppose that:

M=[nl/5]

4.Some concluding remarks

In the paper we have analysed the problems related to the use of
kernel smoothing in the context of dependent data. To do this we have
supposed a regression model with stationary and (-mixing errors.
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We have also proposed a particular kernel method for obtaining an
estimator of the asymptotic variance. It is clear that it is possible to
use the same estimator with a different spread in the kernel weights
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